login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A037992
Smallest number with 2^n divisors.
43
1, 2, 6, 24, 120, 840, 7560, 83160, 1081080, 17297280, 294053760, 5587021440, 128501493120, 3212537328000, 93163582512000, 2888071057872000, 106858629141264000, 4381203794791824000, 188391763176048432000, 8854412869274276304000, 433866230594439538896000
OFFSET
0,2
COMMENTS
Positions where the number of infinitary divisors of n (A037445), increases to a record (cf. A002182), or infinitary analog of highly composite numbers (A002182). - Vladimir Shevelev, May 13-22 2016
Infinitary superabundant numbers: numbers m with record values of the infinitary abundancy index, A049417(m)/m > A049417(k)/k for all k < m. - Amiram Eldar, Sep 20 2019
LINKS
Danny Rorabaugh, Table of n, a(n) for n = 0..350 (first 101 terms from T. D. Noe)
Project Euler, Problem 500!!!
FORMULA
A000005(a(n)) = A000079(n).
a(n) = Product_{k=1..n} A050376(k), product of the first n terms of A050376. - Lekraj Beedassy, Jun 30 2004
a(n) = A052330(2^n -1). - Thomas Ordowski, Jun 29 2005
A001221(a(n+1)) <= A001221(a(n))+1, see also A074239; A007947(a(n)) gives a sequence of primorials (A002110) in nondecreasing order. - Reinhard Zumkeller, Apr 16 2006, corrected: Apr 09 2015
a(n) = A005179(2^n). - Ivan N. Ianakiev, Apr 01 2015
a(n+1)/a(n) = A050376(n+1). - Jinyuan Wang, Oct 14 2018
MATHEMATICA
a[0] = 1; a[n_] := a[n] = Catch[ For[ k = 2, True, k++, If[ an = k*a[n-1]; DivisorSigma[0, an] == 2^n, Throw[an]]]]; Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Apr 16 2012 *)
PROG
(PARI) {a(n)= local(A, m, c, k, p); if(n<1, n==0, c=0; A=1; m=1; while( c<n, m++; if( isprime(m) || ( (k=ispower(m, , &p)) && isprime(p)& k ==2^valuation(k, 2) ), A*=m; c++)); A)} /* Michael Somos, Apr 15 2005 */
(Haskell)
a037992 n = head [x | x <- [1..], a000005 x == 2 ^ n]
-- Reinhard Zumkeller, Apr 08 2015
(Python)
def a(n):
product = 1
k = 1
for i in range(n+1):
product *= k # k=A050376(i), for i>=1
while product % k == 0:
k += 1
return product
# Jason L. Miller, Mar 20 2024
KEYWORD
nonn,nice,easy
AUTHOR
EXTENSIONS
a(18) from Don Reble, Aug 20 2002
STATUS
approved