login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A004152
Sum of digits of n!.
24
1, 1, 2, 6, 6, 3, 9, 9, 9, 27, 27, 36, 27, 27, 45, 45, 63, 63, 54, 45, 54, 63, 72, 99, 81, 72, 81, 108, 90, 126, 117, 135, 108, 144, 144, 144, 171, 153, 108, 189, 189, 144, 189, 180, 216, 207, 216, 225, 234, 225, 216, 198, 279, 279, 261, 279, 333, 270, 288
OFFSET
0,3
COMMENTS
If n > 5, then 9 divides a(n). - Enrique Pérez Herrero, Mar 01 2009
LINKS
Maciej Ireneusz Wilczynski, Table of n, a(n) for n = 0..10000
Florian Luca, The number of non-zero digits of n!, Canad. Math. Bull. 45 (2002), pp. 115-118.
Carlo Sanna, On the sum of digits of the factorial, Journal of Number Theory 147 (February 2015), pp. 836-841. arXiv:1409.4912 [math.NT].
Carlo Sanna, On the sum of digits of the factorial, Journal of Number Theory 147 (February 2015), pp. 836-841.
FORMULA
Luca shows that a(n) >> log n. In particular, a(n) > log_10 n - log_10 log_10 n. - Charles R Greathouse IV, Dec 27 2011
a(n) < floor(log_10(n)*9/2). - Carmine Suriano, Feb 20 2013
a(n) = A007953(A000142(n)). - Michel Marcus, Sep 18 2014
a(n) < 9*(A034886(n) - A027868(n)). - Enrique Pérez Herrero, Nov 16 2014
Sanna improved Luca's result to a(n) >> log n log log log n. - Charles R Greathouse IV, Jan 30 2015
a(n) = 9*A202708(n), n>=6. - R. J. Mathar, Jul 30 2021
EXAMPLE
a(5) = 3 because 5! = 120 and 1 + 2 + 0 = 3.
a(6) = 9 because 6! = 720 and 7 + 2 + 0 = 9.
MAPLE
seq(convert(convert(n!, base, 10), `+`), n=0..100); # Robert Israel, Nov 13 2014
MATHEMATICA
Table[ Plus @@ IntegerDigits[n!], {n, 0, 100}] (* Enrique Pérez Herrero, Mar 01 2009 *)
PROG
(PARI) a(n)=my(v=eval(Vec(Str(n!)))); sum(i=1, #v, v[i]) \\ Charles R Greathouse IV, Dec 27 2011
(PARI) a(n) = sumdigits(n!); \\ Michel Marcus, Sep 18 2014
(Magma) [&+Intseq(Factorial(n)): n in [0..70]]; // Vincenzo Librandi, Jan 30 2015
CROSSREFS
Cf. A000142 (factorial), A007953 (sum of digits), A079584 (same in base 2), A086358 (digital root of n!).
Cf. A066419 (k such that a(k) does not divide k!).
Sequence in context: A105815 A136696 A086358 * A071678 A316164 A319276
KEYWORD
nonn,base
STATUS
approved