login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A034886
Number of digits in n!.
46
1, 1, 1, 1, 2, 3, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 18, 19, 20, 22, 23, 24, 26, 27, 29, 30, 31, 33, 34, 36, 37, 39, 41, 42, 44, 45, 47, 48, 50, 52, 53, 55, 57, 58, 60, 62, 63, 65, 67, 68, 70, 72, 74, 75, 77, 79, 81, 82, 84, 86, 88, 90, 91, 93, 95, 97, 99, 101, 102
OFFSET
0,5
COMMENTS
Most counterexamples to the Kamenetsky formula (see below) must belong to A177901.
Noam D. Elkies reported on MathOverflow (see link):
"A counterexample [to Kamenetsky's formula] is n_1 := 6561101970383, with log_10((n_1/e)^n_1*sqrt(2*Pi*n_1) = 81244041273652.999999999999995102483-, but log_10(n_1!) = 81244041273653.000000000000000618508+. [...] n_1 is the first counterexample, and the only one up to 10^14."
From Bernard Schott, Dec 07 2019: (Start)
a(n) < n iff 2 <= n <= 21;
a(n) = n iff n = 1, 22, 23, 24;
a(n) > n iff n = 0 or n >= 25. (End)
REFERENCES
Martin Gardner, "Factorial Oddities." Ch. 4 in Mathematical Magic Show: More Puzzles, Games, Diversions, Illusions and Other Mathematical Sleight-of-Mind from Scientific American. New York: Vintage, pp. 50-65, 1978
FORMULA
a(n) = floor(log(n!)/log(10)) + 1.
a(n) = A027869(n) + A079680(n) + A079714(n) + A079684(n) + A079688(n) + A079690(n) + A079691(n) + A079692(n) + A079693(n) + A079694(n); a(n) = A055642(A000142(n)). - Reinhard Zumkeller, Jan 27 2008
Using Stirling's formula we can derive an approximation, which is very fast to compute in practice: ceiling(log_10(2*Pi*n)/2 + n*(log_10(n/e))). This approximation gives the exact answer for 2 <= n <= 5*10^7. - Dmitry Kamenetsky, Jul 07 2008
a(n) = ceiling(log_10(1) + log_10(2) + ... + log_10(n)). - Dmitry Kamenetsky, Nov 05 2010
MAPLE
A034886 := n -> `if`(n<2, 1, `if`(n<6561101970383, ceil((ln(2*Pi)-2*n+ln(n)*(1+2*n))/(2*ln(10))), length(n!))); # Peter Luschny, Aug 26 2011
MATHEMATICA
Join[{1, 1}, Table[Ceiling[Log[10, 2 Pi n]/2 + n*Log[10, n/E]], {n, 2, 71}]]
f[n_] := Floor[(Log[2Pi] - 2n + Log[n]*(1 + 2n))/(2Log[10])] + 1; f[0] = f[1] = 1; Array[f, 72, 0] (* Robert G. Wilson v, Jan 09 2013 *)
IntegerLength/@(Range[0, 80]!) (* Harvey P. Dale, Aug 07 2022 *)
PROG
(Haskell)
a034886 = a055642 . a000142 -- Reinhard Zumkeller, Apr 08 2012
(PARI) for(n=0, 30, print1(floor(log(n!)/log(10)) + 1, ", ")) \\ G. C. Greubel, Feb 26 2018
(Magma) [Floor(Log(Factorial(n))/Log(10)) + 1: n in [0..30]]; // G. C. Greubel, Feb 26 2018
CROSSREFS
Cf. A006488 (a(n) is a square), A056851 (a(n) is a cube), A035065 (a(n) is a prime), A333431 (a(n) is a factorial), A333598 (a(n) is a palindrome), A067367 (p and a(p) are primes), A058814 (n divides a(n)).
Cf. A137580 (number of distinct digits in n!), A027868 (number of trailing zeros in n!).
Sequence in context: A348776 A024698 A011883 * A011882 A025767 A091848
KEYWORD
nonn,base,easy
EXTENSIONS
Explained that the formula is an approximation. Made the formula easier to read. - Dmitry Kamenetsky, Dec 15 2010
STATUS
approved