The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A034886 Number of digits in n!. 44
 1, 1, 1, 1, 2, 3, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 18, 19, 20, 22, 23, 24, 26, 27, 29, 30, 31, 33, 34, 36, 37, 39, 41, 42, 44, 45, 47, 48, 50, 52, 53, 55, 57, 58, 60, 62, 63, 65, 67, 68, 70, 72, 74, 75, 77, 79, 81, 82, 84, 86, 88, 90, 91, 93, 95, 97, 99, 101, 102 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Most counterexamples to the Kamenetsky formula (see below) must belong to A177901. Noam D. Elkies reported on MathOverflow (see link): "A counterexample [to Kamenetsky's formula] is n_1 := 6561101970383, with log_10((n_1/e)^n_1*sqrt(2*Pi*n_1) = 81244041273652.999999999999995102483-, but log_10(n_1!) = 81244041273653.000000000000000618508+. [...] n_1 is the first counterexample, and the only one up to 10^14." From Bernard Schott, Dec 07 2019: (Start) a(n) < n iff 2 <= n <= 21; a(n) = n iff n = 1, 22, 23, 24; a(n) > n iff n = 0 or n >= 25. (End) REFERENCES Martin Gardner, "Factorial Oddities." Ch. 4 in Mathematical Magic Show: More Puzzles, Games, Diversions, Illusions and Other Mathematical Sleight-of-Mind from Scientific American. New York: Vintage, pp. 50-65, 1978 LINKS T. D. Noe, Table of n, a(n) for n = 0..10000 Noam D. Elkies, A counterexample to Kamenetsky's formula for the number of digits in n-factorial. Wikipedia, Stirling's Formula. Index entries for sequences related to factorial numbers. FORMULA a(n) = floor(log(n!)/log(10)) + 1. a(n) = A027869(n) + A079680(n) + A079714(n) + A079684(n) + A079688(n) + A079690(n) + A079691(n) + A079692(n) + A079693(n) + A079694(n); a(n) = A055642(A000142(n)). - Reinhard Zumkeller, Jan 27 2008 Using Stirling's formula we can derive an approximation, which is very fast to compute in practice: ceiling(log_10(2*Pi*n)/2 + n*(log_10(n/e))). This approximation gives the exact answer for 2 <= n <= 5*10^7. - Dmitry Kamenetsky, Jul 07 2008 a(n) = ceiling(log_10(1) + log_10(2) + ... + log_10(n)). - Dmitry Kamenetsky, Nov 05 2010 MAPLE A034886 := n -> `if`(n<2, 1, `if`(n<6561101970383, ceil((ln(2*Pi)-2*n+ln(n)*(1+2*n))/(2*ln(10))), length(n!))); # Peter Luschny, Aug 26 2011 MATHEMATICA Join[{1, 1}, Table[Ceiling[Log[10, 2 Pi n]/2 + n*Log[10, n/E]], {n, 2, 71}]] f[n_] := Floor[(Log[2Pi] - 2n + Log[n]*(1 + 2n))/(2Log[10])] + 1; f[0] = f[1] = 1; Array[f, 72, 0] (* Robert G. Wilson v, Jan 09 2013 *) IntegerLength/@(Range[0, 80]!) (* Harvey P. Dale, Aug 07 2022 *) PROG (Haskell) a034886 = a055642 . a000142 -- Reinhard Zumkeller, Apr 08 2012 (PARI) for(n=0, 30, print1(floor(log(n!)/log(10)) + 1, ", ")) \\ G. C. Greubel, Feb 26 2018 (Magma) [Floor(Log(Factorial(n))/Log(10)) + 1: n in [0..30]]; // G. C. Greubel, Feb 26 2018 CROSSREFS Cf. A000142, A055642. Cf. A006488 (a(n) is a square), A056851 (a(n) is a cube), A035065 (a(n) is a prime), A333431 (a(n) is a factorial), A333598 (a(n) is a palindrome), A067367 (p and a(p) are primes), A058814 (n divides a(n)). Cf. A137580 (number of distinct digits in n!), A027868 (number of trailing zeros in n!). Sequence in context: A348776 A024698 A011883 * A011882 A025767 A091848 Adjacent sequences: A034883 A034884 A034885 * A034887 A034888 A034889 KEYWORD nonn,base,easy AUTHOR Erich Friedman EXTENSIONS Explained that the formula is an approximation. Made the formula easier to read. - Dmitry Kamenetsky, Dec 15 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 18 18:58 EDT 2024. Contains 371781 sequences. (Running on oeis4.)