login
This site is supported by donations to The OEIS Foundation.

 

Logo

Many excellent designs for a new banner were submitted. We will use the best of them in rotation.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A025767 Expansion of 1/((1-x)(1-x^3)(1-x^4)). 2
1, 1, 1, 2, 3, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15, 17, 18, 20, 22, 24, 26, 28, 30, 33, 35, 37, 40, 43, 45, 48, 51, 54, 57, 60, 63, 67, 70, 73, 77, 81, 84, 88, 92, 96, 100, 104, 108, 113, 117, 121, 126, 131, 135, 140, 145, 150, 155, 160, 165, 171, 176, 181, 187, 193, 198 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

Apply the Riordan array (1/(1-x^4),x) to floor((n+3)/3). - Paul Barry, Jan 20 2006

LINKS

Table of n, a(n) for n=0..65.

Index to sequences with linear recurrences with constant coefficients, signature (1,0,1,0,-1,0,-1,1).

FORMULA

G.f.: 1/((1-x)(1-x^3)(1-x^4)). a(n)=[n^2/24+n/3+1].

a(n)=sum{k=0..floor(n/4), floor((n-4k+3)/3)}; - Paul Barry, Jan 20 2006

Euler transform of length 4 sequence [ 1, 0, 1, 1]. - Michael Somos Nov 09 2007

a(-8 - n) = a(n). - Michael Somos Nov 09 2007

a(n) = n^2/24 +n/3 +83/144 +(-1)^n/16 +A061347(n+1)/9 +A056594(n)/4. - R. J. Mathar, Mar 31 2011

MAPLE

A056594 := proc(n) op(1+(n mod 4), [1, 0, -1, 0]) ; end proc:

A061347 := proc(n) op(1+(n mod 3), [-2, 1, 1]) ; end proc:

A025767 := proc(n) n^2/24+n/3+83/144+(-1)^n/16 +A061347(n+1)/9 +A056594(n)/4 ; end proc: # R. J. Mathar, Mar 31 2011

PROG

(PARI) a(n)=if(n<0, 0, (n^2+8*n)\24+1)

(PARI) {a(n) = round( ((n + 4)^2 - 1) / 24 )} /* Michael Somos Nov 09 2007 */

CROSSREFS

A008621(n) = A002265(n+4) = a(n) - a(n-3).

Sequence in context: A011883 A034886 A011882 * A091848 A017886 A029038

Adjacent sequences:  A025764 A025765 A025766 * A025768 A025769 A025770

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified April 19 19:16 EDT 2014. Contains 240777 sequences.