login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A025765
Expansion of 1/((1-x)(1-x^2)(1-x^9)).
1
1, 1, 2, 2, 3, 3, 4, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 19, 20, 22, 23, 25, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 49, 51, 54, 56, 59, 61, 64, 66, 69, 72, 75, 78, 81, 84, 87, 90, 93, 96, 100, 103, 107, 110
OFFSET
0,3
FORMULA
a(n)= +a(n-1) +a(n-2) -a(n-3) +a(n-9) -a(n-10) -a(n-11) +a(n-12). - R. J. Mathar, Mar 22 2011
MAPLE
A014018 := proc(n) if n < 0 then 0; else coeftayl(1/(1+x^3+x^6), x=0, n) ; end if; end proc:
A061347 := proc(n) op(1+(n mod 3), [1, 1, -2]) ; end proc:
A025765 := proc(n) 1/3*n +173/216 +1/36*n^2 +1/8*(-1)^n + ( A014018(n-2)+A014018(n-4)+A014018(n-5))/3 - A061347(n+2)/27 ; end proc:
seq(A025765(n), n=0..40) ; # R. J. Mathar, Mar 22 2011
MATHEMATICA
CoefficientList[Series[1/((1-x)(1-x^2)(1-x^9)), {x, 0, 60}], x] (* or *) LinearRecurrence[{1, 1, -1, 0, 0, 0, 0, 0, 1, -1, -1, 1}, {1, 1, 2, 2, 3, 3, 4, 4, 5, 6, 7, 8}, 60] (* Harvey P. Dale, Aug 14 2021 *)
PROG
(PARI) Vec(1/((1-x)*(1-x^2)*(1-x^9))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
CROSSREFS
Sequence in context: A358466 A194210 A112672 * A029029 A025157 A006141
KEYWORD
nonn,easy
STATUS
approved