login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A008679 Expansion of 1/((1-x^3)*(1-x^4)). 6
1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 3, 2, 3, 3, 3, 3, 3, 3, 4, 3, 3, 4, 4, 3, 4, 4, 4, 4, 4, 4, 5, 4, 4, 5, 5, 4, 5, 5, 5, 5, 5, 5, 6, 5, 5, 6, 6, 5, 6, 6, 6, 6, 6, 6, 7, 6, 6, 7, 7, 6, 7, 7, 7, 7, 7, 7, 8, 7 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,13

COMMENTS

Number of partitions of n into parts 3 or 4. - Reinhard Zumkeller, Feb 09 2009

Convolution of A112689 (shifted left once) by A033999. - R. J. Mathar, Feb 13 2009

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 216

Index entries for linear recurrences with constant coefficients, signature (0,0,1,1,0,0,-1).

FORMULA

a(n+12) = a(n) + 1. - Reinhard Zumkeller, Feb 09 2009

G.f.: 1/((1-x)^2*(1+x)*(1+x+x^2)*(1+x^2)). - R. J. Mathar, Feb 13 2009

a(n) = 1 + floor(n/3) + floor(-n/4). - Tani Akinari, Sep 02 2013

E.g.f.: (1/72)*(9*exp(-x)+21*exp(x)+6*exp(x)*x+18*cos(x)+24*exp(-x/2)*cos(sqrt(3)*x/2)-18*sin(x)+8*sqrt(3)*exp(-x/2)*sin(sqrt(3)*x/2)). - Stefano Spezia, Sep 09 2019

MAPLE

seq(coeff(series(1/((1-x^3)*(1-x^4)), x, n+1), x, n), n = 0..90); # G. C. Greubel, Sep 09 2019

MATHEMATICA

LinearRecurrence[{0, 0, 1, 1, 0, 0, -1}, {1, 0, 0, 1, 1, 0, 1}, 90] (* Vladimir Joseph Stephan Orlovsky, Feb 23 2012 *)

CoefficientList[Series[1/((1-x)^2(1+x)(1+x+x^2)(1+x^2)), {x, 0, 90}], x] (* Vincenzo Librandi, Jun 11 2013 *)

PROG

(PARI) my(x='x+O('x^90)); Vec(1/((1-x^3)*(1-x^4))) \\ G. C. Greubel, Sep 09 2019

(MAGMA) R<x>:=PowerSeriesRing(Integers(), 90); Coefficients(R!( 1/((1-x^3)*(1-x^4)) )); // G. C. Greubel, Sep 09 2019

(Sage)

def A008679_list(prec):

    P.<x> = PowerSeriesRing(ZZ, prec)

    return P(1/((1-x^3)*(1-x^4))).list()

A008679_list(90) # G. C. Greubel, Sep 09 2019

(GAP) a:=[1, 0, 0, 1, 1, 0, 1, 1];; for n in [8..90] do a[n]:=a[n-3]+a[n-4]-a[n-7]; od; a; # G. C. Greubel, Sep 09 2019

CROSSREFS

Sequence in context: A196062 A283682 A087974 * A029435 A089643 A185090

Adjacent sequences:  A008676 A008677 A008678 * A008680 A008681 A008682

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 21 13:20 EDT 2020. Contains 337272 sequences. (Running on oeis4.)