login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A008682 Expansion of 1/((1-x^4)*(1-x^5)*(1-x^6)). 3
1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 2, 1, 2, 1, 2, 2, 3, 2, 3, 2, 4, 3, 4, 3, 5, 4, 5, 4, 6, 5, 7, 5, 7, 6, 8, 7, 9, 7, 9, 8, 11, 9, 11, 9, 12, 11, 13, 11, 14, 12, 15, 13, 16, 14, 17, 15, 18, 16, 19, 17, 21, 18, 21, 19, 23, 21, 24, 21, 25, 23, 27, 24, 28, 25, 29, 27, 31, 28, 32, 29, 34, 31 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,11

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 229

Index entries for linear recurrences with constant coefficients, signature (0,0,0,1,1,1,0,0,-1,-1,-1,0,0,0,1).

MAPLE

seq(coeff(series(1/mul(1-x^j, j=4..6), x, n+1), x, n), n = 0..90); # G. C. Greubel, Sep 09 2019

MATHEMATICA

CoefficientList[Series[1/((1-x^4)(1-x^5)(1-x^6)), {x, 0, 90}], x] (* Vincenzo Librandi, Jun 23 2013 *)

PROG

(PARI) Vec(1/(1-x^4)*(1-x^5)*(1-x^6)+O(x^90)) \\ Charles R Greathouse IV, Sep 26 2012

(MAGMA) R<x>:=PowerSeriesRing(Integers(), 90); Coefficients(R!( 1/&*[1-x^j: j in [4..6]] )); // G. C. Greubel, Sep 09 2019

(Sage)

def A008682_list(prec):

    P.<x> = PowerSeriesRing(ZZ, prec)

    return P(1/prod(1-x^j for j in (4..6))).list()

A008682_list(90) # G. C. Greubel, Sep 09 2019

CROSSREFS

Sequence in context: A281543 A287476 A185317 * A112224 A058774 A033101

Adjacent sequences:  A008679 A008680 A008681 * A008683 A008684 A008685

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

EXTENSIONS

Typo in name fixed by Vincenzo Librandi, Jun 23 2013

More terms added from b-file. - G. C. Greubel, Sep 09 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 14 01:33 EDT 2020. Contains 336473 sequences. (Running on oeis4.)