login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A008681 Expansion of 1/((1-x^3)*(1-x^4)*(1-x^5)*(1-x^6)). 1
1, 0, 0, 1, 1, 1, 2, 1, 2, 3, 3, 3, 5, 4, 5, 7, 7, 7, 10, 9, 11, 13, 13, 14, 18, 17, 19, 22, 23, 24, 29, 28, 31, 35, 36, 38, 44, 43, 47, 52, 54, 56, 63, 63, 68, 74, 76, 79, 88, 88, 94, 101, 104, 108, 118, 119, 126, 134, 138, 143, 155, 156, 164, 174, 179, 185, 198, 200, 210, 221, 227 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,7

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 237

Index entries for linear recurrences with constant coefficients, signature (0,0,1,1,1,1,-1,-1,-2,-1,-1,1,1,1,1,0,0,-1).

MAPLE

seq(coeff(series(1/mul(1-x^j, j=3..6), x, n+1), x, n), n = 0..80); # G. C. Greubel, Sep 09 2019

MATHEMATICA

CoefficientList[Series[1/((1-x^3)(1-x^4)(1-x^5)(1-x^6)), {x, 0, 80}], x] (* Vincenzo Librandi, Jun 23 2013 *)

PROG

(PARI) my(x='x+O('x^80)); Vec(1/prod(j=3, 6, 1-x^j)) \\ G. C. Greubel, Sep 09 2019

(MAGMA) R<x>:=PowerSeriesRing(Integers(), 80); Coefficients(R!( 1/&*[1-x^j: j in [3..6]] )); // G. C. Greubel, Sep 09 2019

(Sage)

def A008681_list(prec):

    P.<x> = PowerSeriesRing(ZZ, prec)

    return P(1/prod(1-x^j for j in (3..6))).list()

A008681_list(80) # G. C. Greubel, Sep 09 2019

CROSSREFS

Sequence in context: A137719 A029165 A035431 * A097242 A183202 A306878

Adjacent sequences:  A008678 A008679 A008680 * A008682 A008683 A008684

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

EXTENSIONS

Typo in name fixed by Vincenzo Librandi, Jun 23 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 17 08:36 EST 2019. Contains 329217 sequences. (Running on oeis4.)