login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A089643
3^a(n) divides C(3n,n); 3-adic valuation of A005809.
1
0, 1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 2, 3, 1, 1, 2, 2, 1, 2, 2, 2, 3, 2, 2, 3, 3, 1, 2, 2, 2, 3, 2, 2, 3, 3, 2, 3, 3, 3, 4, 1, 1, 2, 2, 1, 2, 2, 2, 3, 2, 2, 3, 3, 1, 2, 2, 2, 3, 2, 2, 3, 3, 2, 3, 3, 3, 4, 2, 2, 3, 3, 2, 3, 3, 3, 4, 3, 3, 4, 4, 1, 2, 2, 2, 3, 2, 2, 3, 3, 2, 3, 3, 3, 4, 2, 2, 3, 3, 2, 3, 3, 3, 4, 3
OFFSET
0,5
LINKS
FORMULA
a(n) = A007949(A005809(n)). - Antti Karttunen, Jul 29 2017
a(n) = A054861(3*n) - A054861(2*n) - A054861(n). - David A. Corneth, Jul 29 2017
a(n) = A053735(2*n)/2. - Amiram Eldar, Feb 21 2021
MATHEMATICA
Table[IntegerExponent[Binomial[3 n, n], 3], {n, 0, 104}] (* Michael De Vlieger, Jul 29 2017 *)
PROG
(PARI) a(n)=valuation(binomial(3*n, n), 3)
(Python)
from sympy import binomial
def a007949(n): return 0 if n%3 else a007949(n//3) + 1
def a(n): return a007949(binomial(3*n, n))
print([a(n) for n in range(151)]) # Indranil Ghosh, Jul 29 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Benoit Cloitre, Jan 01 2004
STATUS
approved