login
A089644
Numbers k such that 7 divides the numerator of B(2*k) where B(k) = the k-th Bernoulli number.
2
7, 14, 28, 35, 49, 56, 70, 77, 91, 98, 112, 119, 133, 140, 154, 161, 175, 182, 196, 203, 217, 224, 238, 245, 259, 266, 280, 287, 301, 308, 322, 329, 343, 350, 364, 371, 385, 392, 406, 413, 427, 434, 448, 455, 469, 476, 490, 497, 511, 518, 532, 539, 553, 560
OFFSET
1,1
LINKS
FORMULA
a(n) = 7*A001651(n).
a(n) = 21*(n-1)-a(n-1), with n>1, a(1)=7. - Vincenzo Librandi, Nov 16 2010
MATHEMATICA
Select[Range[500], Divisible[Numerator @ BernoulliB[2*#], 7] &] (* Amiram Eldar, May 17 2021 *)
PROG
(PARI) isok(n) = ! ((numerator(bernfrac(2*n))) % 7); \\ Michel Marcus, Dec 06 2013
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Benoit Cloitre, Jan 01 2004
STATUS
approved