|
|
A006488
|
|
Numbers n such that n! has a square number of digits.
(Formerly M0830)
|
|
5
|
|
|
0, 1, 2, 3, 7, 12, 18, 32, 59, 81, 105, 132, 228, 265, 284, 304, 367, 389, 435, 483, 508, 697, 726, 944, 1011, 1045, 1080, 1115, 1187, 1454, 1494, 1617, 1659, 1788, 1921, 2012, 2105, 2200, 2248, 2395, 2445, 2861, 2915, 3192, 3480, 3539, 3902, 3964, 4476
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
Numbers whose square is represented by the number of digits of n!: 1, 2, 3, 4, 6, 9, 11, 13, 15, 21, 23, 24, 25, 28, 29, ..., . - Robert G. Wilson v, May 14 2014
From Bernard Schott, Jan 04 2020: (Start)
In M. Gardner's book, see reference, there is a tree printout of 105! with 169 digits, where the bottom row consists of the 25 trailing zeros of 105!. M. Gardner does not explain if this is the only factorial that can be displayed in a similar tree form.
Proof: If m! has q^2 digits, hence the number of trailing zeros in m! must be equal to 2*q-1 to satisfy this triangular look; m = 105 satisfies these two conditions with q = 13 because 105! has 13^2 = 169 digits and 2*13-1 = 25 trailing zeros.
When m < 105 and m! has q^2 digits (m <= 81), then q <= 11 and the number of trailing zeros is <= 2*q - 3.
When m > 105 and m! has q^2 digits (m >= 132), then q >= 15 and the number of trailing zeros is >= 2*q + 2.
Hence, only 105! presents such a tree printout.
1
081
39675
8240290
900504101
30580032964
9720646107774
902579144176636
57322653190990515
3326984536526808240
339776398934872029657
99387290781343681609728
0000000000000000000000000
(End)
|
|
REFERENCES
|
M. Gardner, Mathematical Magic Show. Random House, NY, 1978, p. 55.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
Robert G. Wilson v, Table of n, a(n) for n = 1..1311
D. S. Kluk and N. J. A. Sloane, Correspondence, 1979
Eric Weisstein's World of Mathematics, Stirling's Approximation and Stirling's Series
Index entries for sequences related to factorial numbers
|
|
MATHEMATICA
|
LogBase10Stirling[n_] := Floor[Log[10, 2 Pi n]/2 + n*Log[10, n/E] + Log[10, 1 + 1/(12n) + 1/(288n^2) - 139/(51840n^3) - 571/(2488320n^4) + 163879/(209018880n^5)]]; Select[ Range[ 4500], IntegerQ[ Sqrt[ (LogBase10Stirling[ # ] + 1)]] & ] (* The Mathematica coding comes from J. Stirling's expansion for the Gamma function; see the links. For more terms inside the last Log_10 function, use A001163 & A001164. Robert G. Wilson v, Apr 27 2014 *)
Select[Range[0, 4500], IntegerQ[Sqrt[IntegerLength[#!]]]&] (* Harvey P. Dale, Sep 27 2018 *)
|
|
PROG
|
(PARI) isok(n) = issquare(#Str(n!)); \\ Michel Marcus, Sep 05 2015
(Magma) [k:k in [0..5000]| IsSquare(#Intseq(Factorial(k)))]; // Marius A. Burtea, Jan 04 2020
|
|
CROSSREFS
|
Cf. A000142, A027868 (trailing zeros), A034886 (number of digits), A056851.
Sequence in context: A228828 A061577 A350437 * A121430 A217379 A023606
Adjacent sequences: A006485 A006486 A006487 * A006489 A006490 A006491
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
N. J. A. Sloane and Robert G. Wilson v
|
|
STATUS
|
approved
|
|
|
|