This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A058814 Numbers k such that k divides the number of digits of k!. 1
 1, 22, 23, 24, 266, 267, 268, 2712, 2713, 27175, 27176, 271819, 271820, 271821, 2718272, 2718273, 27182807, 27182808, 271828170, 271828171, 271828172 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS For k = 1, 22, 23 and 24 only, the number of digits in k! is equal to k. - Bernard Schott, Feb 02 2013 I employed R. Wm. Gosper's approximation (A090583). - Robert G. Wilson v, Feb 04 2013 For large m, 10^m*C -> 10^m*e, where e is Euler's or Napier's constant (A001113). Conjecture: There exist at least two contiguous terms for each k > 0, sometimes three contiguous terms, but never four. - Robert G. Wilson v, Feb 04 2013 REFERENCES Gardner, M. "Factorial Oddities." Ch. 4 in Mathematical Magic Show: More Puzzles, Games, Diversions, Illusions and Other Mathematical Sleight-of-Mind from Scientific American. New York: Vintage, pp. 50-65, 1978 D. Wells, Curious and Interesting Numbers, Penguin Books, 1997, page 78. LINKS Robert G. Wilson v, Table of n, a(n) for n = 1..102 Eric Weisstein's World of Mathematics, Stirling's Approximation EXAMPLE 23! = 25852016738884976640000 has 23 digits. MATHEMATICA fQ[n_] := Mod[ Floor[(n*Log[n] - n + Log[(2 n + 1/3) Pi]/2)/Log + 1], n] == 0; k = 1; s = {}; While[k < 1000001, If[ fQ@ k, AppendTo[s, k]; Print[k]]; k++]; s (* Robert G. Wilson v, Feb 04 2013 *) PROG (PARI) A034886(n)= /* Number of digits in n! */; { if(n==0, 1, 1 + floor((-n + (2*n+1)*log(n)/2 + 1/2*log(2*Pi))/log(10)) + (n==1)); } goA058814(maxsearch)= /* write b-File for A058814 */ { my(k=0); for(n=1, maxsearch, if(A034886(n)%n==0, k++; print(k" "n); write("b058814.txt", k" "n); )); } /* Enrique Pérez Herrero, Jun 05 2011 */ CROSSREFS Cf. A000142, A034886, A061010. - Enrique Pérez Herrero, Jun 05 2011 Sequence in context: A004511 A296763 A236404 * A034895 A106582 A092619 Adjacent sequences:  A058811 A058812 A058813 * A058815 A058816 A058817 KEYWORD nonn,base AUTHOR Robert G. Wilson v, Jan 03 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 22 17:13 EDT 2019. Contains 327311 sequences. (Running on oeis4.)