login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A106582
Numbers which are the concatenation of two primes.
8
22, 23, 25, 27, 32, 33, 35, 37, 52, 53, 55, 57, 72, 73, 75, 77, 112, 113, 115, 117, 132, 133, 135, 137, 172, 173, 175, 177, 192, 193, 195, 197, 211, 213, 217, 219, 223, 229, 231, 232, 233, 235, 237, 241, 243, 247, 253, 259, 261, 267, 271, 273, 279, 283, 289
OFFSET
1,1
COMMENTS
A105184 and A121609 are subsequences.
LINKS
G. L. Honaker, Jr. and Chris Caldwell, Prime Curios! 17257
EXAMPLE
133 is in the sequence because 133 = 13*10+3 = A000040(6)*10+A000040(2).
MATHEMATICA
nn=500; t=Union[Reap[Do[n=FromDigits[Join[IntegerDigits[Prime[i]], IntegerDigits[Prime[j]]]]; If[n<=nn, Sow[n]], {i, PrimePi[nn/10]}, {j, PrimePi[nn/IntegerDigits[nn][[1]]]}]][[2, 1]]] (* T. D. Noe, Mar 11 2011 *)
PROG
(Python)
from sympy import isprime
from itertools import count, islice
def agen(): # generator of terms
for k in count(1):
s = str(k)
if any(s[i] != '0' and isprime(int(s[:i])) and isprime(int(s[i:])) for i in range(1, len(s))):
yield k
print(list(islice(agen(), 55))) # Michael S. Branicky, Feb 26 2022
CROSSREFS
KEYWORD
base,nonn
AUTHOR
EXTENSIONS
Corrected by Arkadiusz Wesolowski, Mar 11 2011
STATUS
approved