login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A106579
Triangular array associated with Schroeder numbers: T(0,0) = 1, T(n,0) = 0 for n > 0; T(n,k) = 0 if k < n; T(n,k) = T(n,k-1) + T(n-1,k-1) + T(n-1,k).
2
1, 0, 1, 0, 1, 2, 0, 1, 4, 6, 0, 1, 6, 16, 22, 0, 1, 8, 30, 68, 90, 0, 1, 10, 48, 146, 304, 394, 0, 1, 12, 70, 264, 714, 1412, 1806, 0, 1, 14, 96, 430, 1408, 3534, 6752, 8558, 0, 1, 16, 126, 652, 2490, 7432, 17718, 33028, 41586, 0, 1, 18, 160, 938, 4080, 14002, 39152, 89898, 164512, 206098
OFFSET
0,6
LINKS
G. Kreweras, Sur les hiérarchies de segments, Cahiers du Bureau Universitaire de Recherche Opérationnelle, Institut de Statistique, Université de Paris, #20 (1973).
G. Kreweras, Sur les hiérarchies de segments, Cahiers du Bureau Universitaire de Recherche Opérationnelle, Institut de Statistique, Université de Paris, #20 (1973). (Annotated scanned copy)
FORMULA
G.f.: Sum T(n, k)*x^n*y^k = 1 + y*(1 - x*y - (x^2*y^2 - 6*x*y + 1)^(1/2))/(2*y + x*y - 1 + (x^2*y^2 - 6*x*y + 1)^(1/2)).
EXAMPLE
Triangle starts
1;
0, 1;
0, 1, 2;
0, 1, 4, 6;
0, 1, 6, 16, 22;
0, 1, 8, 30, 68, 90;
0, 1, 10, 48, 146, 304, 394;
0, 1, 12, 70, 264, 714, 1412, 1806;
...
MATHEMATICA
T[n_, k_]:= T[n, k]= Which[n==k==0, 1, n==0, 0, k==0, 0, k>n, 0, True, T[n, k-1] + T[n-1, k-1] + T[n-1, k]]; Table[T[n, k], {n, 0, 11}, {k, 0, n}]//Flatten (* Michael De Vlieger, Nov 05 2017 *)
PROG
(Haskell)
a106579 n k = a106579_tabl !! n !! k
a106579_row n = a106579_tabl !! n
a106579_tabl = [1] : iterate
(\row -> scanl1 (+) $ zipWith (+) ([0] ++ row) (row ++ [0])) [0, 1]
-- Reinhard Zumkeller, Apr 17 2013
(Sage)
def A106579_row(n):
if n==0: return [1]
@cached_function
def prec(n, k):
if k==n: return -1
if k==0: return 0
return prec(n-1, k-1)-2*sum(prec(n, k+i-1) for i in (2..n-k+1))
return [(-1)^k*prec(n, n-k+1) for k in (0..n)]
for n in (0..10): print(A106579_row(n)) # Peter Luschny, Mar 16 2016
CROSSREFS
Essentially the same as A033877 except with a leading column 1, 0, 0, 0, ...
Last diagonal: A006318 or A103137.
Row sums give A001003.
See A033877 for more comments and references.
Sequence in context: A359107 A229223 A128749 * A378318 A287318 A329020
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, May 30 2005
STATUS
approved