login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A329020
Square array T(n,k), n>=0, k>=0, read by antidiagonals, where T(n,k) is the constant term in the expansion of ( Sum_{j=1..k} x_j^(2*j-1) + x_j^(-(2*j-1)) )^(2*n).
2
1, 1, 0, 1, 2, 0, 1, 4, 6, 0, 1, 6, 44, 20, 0, 1, 8, 146, 580, 70, 0, 1, 10, 344, 4332, 8092, 252, 0, 1, 12, 670, 18152, 135954, 116304, 924, 0, 1, 14, 1156, 55252, 1012664, 4395456, 1703636, 3432, 0, 1, 16, 1834, 137292, 4816030, 58199208, 144840476, 25288120, 12870, 0
OFFSET
0,5
LINKS
FORMULA
T(n,k) = Sum_{j=0..floor((2*k-1)*n/(2*k))} (-1)^j * binomial(2*n,j) * binomial((2*k+1)*n-2*k*j-1,(2*k-1)*n-2*k*j) for k > 0.
EXAMPLE
(x^3 + x + 1/x + 1/x^3)^2 = x^6 + 2*x^4 + 3*x^2 + 4 + 3/x^2 + 2/x^4 + 1/x^6. So T(1,2) = 4.
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, 2, 4, 6, 8, 10, ...
0, 6, 44, 146, 344, 670, ...
0, 20, 580, 4332, 18152, 55252, ...
0, 70, 8092, 135954, 1012664, 4816030, ...
0, 252, 116304, 4395456, 58199208, 432457640, ...
MATHEMATICA
T[n_, 0] = Boole[n == 0]; T[n_, k_] := Sum[(-1)^j * Binomial[2*n, j] * Binomial[(2*k + 1)*n - 2*k*j - 1, (2*k - 1)*n - 2*k*j], {j, 0, Floor[(2*k - 1)*n/(2*k)]}]; Table[T[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, May 06 2021 *)
CROSSREFS
Columns k=0-3 give A000007, A000984, A005721, A063419.
Rows n=0-2 give A000012, A005843, 2*A143166.
Main diagonal gives A329021.
Cf. A077042.
Sequence in context: A106579 A378318 A287318 * A351640 A173003 A378236
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Nov 02 2019
STATUS
approved