login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Square array T(n,k), n>=0, k>=0, read by antidiagonals, where T(n,k) is the constant term in the expansion of ( Sum_{j=1..k} x_j^(2*j-1) + x_j^(-(2*j-1)) )^(2*n).
2

%I #38 May 06 2021 03:17:07

%S 1,1,0,1,2,0,1,4,6,0,1,6,44,20,0,1,8,146,580,70,0,1,10,344,4332,8092,

%T 252,0,1,12,670,18152,135954,116304,924,0,1,14,1156,55252,1012664,

%U 4395456,1703636,3432,0,1,16,1834,137292,4816030,58199208,144840476,25288120,12870,0

%N Square array T(n,k), n>=0, k>=0, read by antidiagonals, where T(n,k) is the constant term in the expansion of ( Sum_{j=1..k} x_j^(2*j-1) + x_j^(-(2*j-1)) )^(2*n).

%H Seiichi Manyama, <a href="/A329020/b329020.txt">Antidiagonals n = 0..50, flattened</a>

%F T(n,k) = Sum_{j=0..floor((2*k-1)*n/(2*k))} (-1)^j * binomial(2*n,j) * binomial((2*k+1)*n-2*k*j-1,(2*k-1)*n-2*k*j) for k > 0.

%e (x^3 + x + 1/x + 1/x^3)^2 = x^6 + 2*x^4 + 3*x^2 + 4 + 3/x^2 + 2/x^4 + 1/x^6. So T(1,2) = 4.

%e Square array begins:

%e 1, 1, 1, 1, 1, 1, ...

%e 0, 2, 4, 6, 8, 10, ...

%e 0, 6, 44, 146, 344, 670, ...

%e 0, 20, 580, 4332, 18152, 55252, ...

%e 0, 70, 8092, 135954, 1012664, 4816030, ...

%e 0, 252, 116304, 4395456, 58199208, 432457640, ...

%t T[n_, 0] = Boole[n == 0]; T[n_, k_] := Sum[(-1)^j * Binomial[2*n, j] * Binomial[(2*k + 1)*n - 2*k*j - 1, (2*k - 1)*n - 2*k*j], {j, 0, Floor[(2*k - 1)*n/(2*k)]}]; Table[T[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* _Amiram Eldar_, May 06 2021 *)

%Y Columns k=0-3 give A000007, A000984, A005721, A063419.

%Y Rows n=0-2 give A000012, A005843, 2*A143166.

%Y Main diagonal gives A329021.

%Y Cf. A077042.

%K nonn,tabl

%O 0,5

%A _Seiichi Manyama_, Nov 02 2019