The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A077042 Square array read by falling antidiagonals of central polynomial coefficients: largest coefficient in expansion of (1 + x + x^2 + ... + x^(n-1))^k = ((1-x^n)/(1-x))^k, i.e., the coefficient of x^floor(k*(n-1)/2) and of x^ceiling(k*(n-1)/2); also number of compositions of floor(k*(n+1)/2) into exactly k positive integers each no more than n. 12
 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 3, 3, 1, 1, 0, 1, 6, 7, 4, 1, 1, 0, 1, 10, 19, 12, 5, 1, 1, 0, 1, 20, 51, 44, 19, 6, 1, 1, 0, 1, 35, 141, 155, 85, 27, 7, 1, 1, 0, 1, 70, 393, 580, 381, 146, 37, 8, 1, 1, 0, 1, 126, 1107, 2128, 1751, 780, 231, 48, 9, 1, 1, 0, 1, 252, 3139 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,13 COMMENTS From Michel Marcus, Dec 01 2012: (Start) A pair of numbers written in base n are said to be comparable if all digits of the first number are at least as big as the corresponding digit of the second number, or vice versa. Otherwise, this pair will be defined as uncomparable. A set of pairwise uncomparable integers will be called anti-hierarchic. T(n,k) is the size of the maximal anti-hierarchic set of integers written with k digits in base n. For example, for base n=2 and k=4 digits: - 0 (0000) and 15 (1111) are comparable, while 6 (0110) and 9 (1001) are uncomparable, - the maximal antihierarchic set is {3 (0011), 5 (0101), 6 (0110), 9 (1001), 10 (1010), 12 (1100)} with 6 elements that are all pairwise uncomparable. (End) LINKS G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened Denis Bouyssou, Thierry Marchant, Marc Pirlot, The size of the largest antichains in products of linear orders, arXiv:1903.07569 [math.CO], 2019. J. W. Sander, On maximal antihierarchic sets of integers, Discrete Mathematics, Volume 113, Issues 1-3, 5 April 1993, Pages 179-189. FORMULA By the central limit theorem, T(n,k) is roughly n^(k-1)*sqrt(6/(Pi*k)). T(n,k) = Sum{j=0,h/n} (-1)^j*binomial(k,j)*binomial(k-1+h-n*j,k-1) with h=floor(k*(n-1)/2), k>0. - Michel Marcus, Dec 01 2012 EXAMPLE Rows of square array start:   1,    0,    0,    0,    0,    0,    0, ...   1,    1,    1,    1,    1,    1,    1, ...   1,    1,    2,    3,    6,   10,   20, ...   1,    1,    3,    7,   19,   51,  141, ...   1,    1,    4,   12,   44,  155,  580, ...   1,    1,    5,   19,   85,  381, 1751, ...   ... Read by antidiagonals:   1;   0, 1;   0, 1, 1;   0, 1, 1, 1;   0, 1, 2, 1, 1;   0, 1, 3, 3, 1, 1;   0, 1, 6, 7, 4, 1, 1;   ... MATHEMATICA t[n_, k_] := Max[ CoefficientList[ Series[ ((1-x^n) / (1-x))^k, {x, 0, k*(n-1)}], x]]; t[0, 0] = 1; t[0, _] = 0; Flatten[ Table[ t[n-k, k], {n, 0, 12}, {k, n, 0, -1}]] (* Jean-François Alcover, Nov 04 2011 *) PROG (PARI) T(n, k)=if(n<1 || k<1, k==0, vecmax(Vec(((1-x^n)/(1-x))^k))) CROSSREFS Rows include A000007, A000012, A001405, A002426, A005190, A005191, A018901, A025012, A025013, A025014, A025015, A201549, A225779, A201550. Columns include A000012, A000012, A001477, A077043, A005900, A077044, A071816, A133458. Central diagonal is A077045, with A077046 and A077047 either side. Cf. A067059, A270918, A201552. Cf. A273975. Sequence in context: A070878 A228128 A060959 * A144903 A108934 A108947 Adjacent sequences:  A077039 A077040 A077041 * A077043 A077044 A077045 KEYWORD nonn,tabl AUTHOR Henry Bottomley, Oct 22 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 19 11:29 EDT 2021. Contains 345127 sequences. (Running on oeis4.)