login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A342689
Square array read by antidiagonals (upwards): A(n,k) = (k^Fibonacci(n) - 1) / (k - 1) for k >= 0 and n >= 0 with lim_{k -> 1} A(n,k) = A(n,1) = Fibonacci(n).
0
0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 3, 3, 1, 1, 0, 1, 5, 7, 4, 1, 1, 0, 1, 8, 31, 13, 5, 1, 1, 0, 1, 13, 255, 121, 21, 6, 1, 1, 0, 1, 21, 8191, 3280, 341, 31, 7, 1, 1, 0, 1, 34, 2097151, 797161, 21845, 781, 43, 8, 1, 1, 0, 1, 55, 17179869184, 5230176601, 22369621, 97656, 1555, 57, 9, 1, 1, 0
OFFSET
0,12
COMMENTS
Replacing Fibonacci(n), A000045, with Lucas(n), A000032, you get another square array B(n,k). The terms satisfy the same recurrence equation B(n,k) = (k - 1) * B(n-1,k) * B(n-2,k) + B(n-1,k) + B(n-2,k) for k >= 0 and n > 1 with initial values B(0,k) = k+1 and B(1,k) = 1. Please take account of lim_{k -> 1} (k^Lucas(n) - 1) / (k - 1) = Lucas(n).
FORMULA
A(n,k) = (k - 1) * A(n-1,k) * A(n-2,k) + A(n-1,k) + A(n-2,k) for k >= 0 and n > 1 with initial values A(0,k) = 0 and A(1,k) = 1.
EXAMPLE
The array A(n,k) for k >= 0 and n >= 0 begins:
n \ k: 0 1 2 3 4 5 6 7 8 9 10 11
=========================================================================
0 : 0 0 0 0 0 0 0 0 0 0 0 0
1 : 1 1 1 1 1 1 1 1 1 1 1 1
2 : 1 1 1 1 1 1 1 1 1 1 1 1
3 : 1 2 3 4 5 6 7 8 9 10 11 12
4 : 1 3 7 13 21 31 43 57 73 91 111 133
5 : 1 5 31 121 341 781 1555 2801
6 : 1 8 255 3280 21845 97656
7 : 1 13 8191 797161 22369621
8 : 1 21 2097151 5230176601
9 : 1 34 17179869184
10 : 1 55
11 : 1 89
etc.
CROSSREFS
Cf. A011655 (column k = -1), A057427 (column 0), A000045 (column 1), A063896 (column 2), A000004 (row 0), A000012 (rows 1, 2), A000027 (row 3), A002061 (row 4), A053699 (row 5), A053717 (row 6), A060887 (row 7).
Sequence in context: A070878 A228128 A060959 * A077042 A144903 A356266
KEYWORD
nonn,easy,tabl
AUTHOR
Werner Schulte, May 18 2021
STATUS
approved