|
|
A057427
|
|
a(n) = 1 if n > 0, a(n) = 0 if n = 0; series expansion of x/(1-x).
|
|
229
|
|
|
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
Decimal expansion of 1/90.
Number of binary bracelets of n beads, 0 of them 0. Number of binary bracelets of n beads, 1 of them 0. Number of binary bracelets of n beads, 0 of them 0, with 00 prohibited. For n>=2, a(n-1) is the number of binary bracelets of n beads, one of them 0, with 00 prohibited. - Washington Bomfim, Aug 27 2008
This is sgn(n) (or sign(n), or signum(n)) restricted to nonnegative integers. See sequence A261012 for a version that extends the sequence backwards to offset -1.
|
|
REFERENCES
|
T. M. MacRobert, Functions of a Complex Variable, 4th ed., Macmillan and Co., London, 1958, p. 90.
|
|
LINKS
|
|
|
FORMULA
|
G.f.: x / (1 - x).
G.f.: Sum_{k>=0} 2^k * x^(2^k) / (1 + x^(2^k)). - Michael Somos, Sep 11 2005
a(n) = -a(-n) for all n in Z if a(n) is treated as sgn(n).
Sum_{k<0} a(k) * x^k = 1 / (1 - x) if abs(x) > 1. (End)
|
|
EXAMPLE
|
1/90 = .0111111111111111111...
G.f. = x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10 + x^11 + ...
|
|
MAPLE
|
|
|
MATHEMATICA
|
CoefficientList[Series[x/((1 - x)), {x, 0, 25}], x]
LinearRecurrence[{1, 0}, {0, 1}, 105]
Array[Sign, 105, 0]
N[1/9, 111]
|
|
PROG
|
(PARI) {a(n) = sign(n)};
(Haskell)
a057427 = signum
(Python)
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|