login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A103131 The product of the residues in [1,n] relatively prime to n, taken modulo n. 3
0, 1, -1, -1, -1, -1, -1, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Old name was: Minimal residue (in absolute value) of A001783(n) (mod n).

If the positive representation for integers modulo n is used this is A160377. Here the symmetric (or minimal) representation for the integers modulo n is used.

From Gauss's generalization of Wilson's theorem (see Weisstein link) it follows that, for n>1, a(n) = -1 if and only if there exists a primitive root modulo n (cf. the Hardy and Wright reference, Theorem 129. p. 102). (Adapted from a comment by Vladimir Shevelev in A001783). - Peter Luschny, Oct 20 2012

REFERENCES

G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth ed., Clarendon Press, Oxford, 2003, Theorem 129, p. 102.

LINKS

Antti Karttunen, Table of n, a(n) for n = 1..16385

J. B. Cosgrave, K. Dilcher, Extensions of the Gauss-Wilson Theorem, Integers: Electronic Journal of Combinatorial Number Theory, 8 (2008).

Eric Weisstein's World of Mathematics, Wilson's theorem

FORMULA

For n>2, a(n)=-1 if A060594(n)=2, or equivalently if n is in A033948; otherwise a(n)=1. - Max Alekseyev, May 26 2009; edited by Peter Luschny, May 25 2017.

a(n) = Gauss_factorial(n, n) modulo n. (Definition of the Gauss factorial in A216919.) - Peter Luschny, Oct 20 2012

For n > 2, a(n) = (-1)^A211487(n). (See Max Alekseyev's formula above.) - Antti Karttunen, Aug 22 2017

EXAMPLE

The residues in [1, 22] relatively prime to 22 are [1, 3, 5, 7, 9, 13, 15, 17, 19, 21] and the product of those residues is -1 modulo 22.

MAPLE

A103131 := proc(n) local k, r; r := 1;

for k to n do if igcd(n, k) = 1 then r := mods(r*k, n) fi od;

r end: seq(A103131(i), i=1..102);   # Peter Luschny, Oct 20 2012

MATHEMATICA

a[n_] := If[IntegerQ[PrimitiveRoot[n]], -1, 1]; a[1] = 0; a[2] = 1; Table[a[n], {n, 1, 102}] (* Jean-Fran├žois Alcover, Nov 09 2012, after Max Alekseyev *)

PROG

(Sage)

def A103131(n):

    def smod(a, n): return a-n*ceil(a/n-1/2) if n != 0 else a

    r = 1

    for k in (1..n):

        if gcd(n, k) == 1: r = smod(r*k, n)

    return r

[A103131(n) for n in (1..102)]  # Peter Luschny, Oct 20 2012

(PARI)

A211487(n) = if(n%2, !!isprimepower(n), (n==2 || n==4 || (isprimepower(n/2, &n) && n>2))); \\ After Charles R Greathouse IV's code for A033948.

A103131(n) = if(n<=2, n-1, (-1)^A211487(n)); \\ Antti Karttunen, Aug 22 2017

CROSSREFS

Cf. A001783, A160377, A211487, A216919.

Sequence in context: A226523 A070238 A062157 * A112347 A057427 A178334

Adjacent sequences:  A103128 A103129 A103130 * A103132 A103133 A103134

KEYWORD

sign

AUTHOR

Eric W. Weisstein, Jan 23 2005

EXTENSIONS

Definition rewritten by Max Alekseyev, May 26 2009

New name from Peter Luschny, Oct 20 2012

a(2) set to 1 by Peter Luschny, May 25 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 30 12:24 EST 2020. Contains 338802 sequences. (Running on oeis4.)