login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A160377
Phi-torial of n (A001783) modulo n.
4
0, 1, 2, 3, 4, 5, 6, 1, 8, 9, 10, 1, 12, 13, 1, 1, 16, 17, 18, 1, 1, 21, 22, 1, 24, 25, 26, 1, 28, 1, 30, 1, 1, 33, 1, 1, 36, 37, 1, 1, 40, 1, 42, 1, 1, 45, 46, 1, 48, 49, 1, 1, 52, 53, 1, 1, 1, 57, 58, 1, 60, 61, 1, 1, 1, 1, 66, 1, 1, 1, 70, 1, 72, 73, 1, 1, 1, 1, 78, 1, 80, 81, 82, 1, 1, 85, 1, 1
OFFSET
1,3
COMMENTS
Is a(n)<> 1 iff n in A033948, n>2? [R. J. Mathar, May 21 2009]
Same as A103131, except there -1 appears instead of n-1. By Gauss's generalization of Wilson's theorem, a(n)=-1 means n has a primitive root (n in A033948) and a(n)=1 means n has no primitive root (n in A033949). [T. D. Noe, May 21 2009]
LINKS
John B. Cosgrave and Karl Dilcher, Extensions of the Gauss-Wilson Theorem, Integers: Electronic Journal of Combinatorial Number Theory, Vol. 8 (2008), Article #A39.
Eric Weisstein's World of Mathematics, Wilson's Theorem.
FORMULA
a(n) = A001783(n) mod n. - R. J. Mathar, May 21 2009
For n>2, a(n)=n-1 if A060594(n)=2; otherwise a(n)=1. - Max Alekseyev
a(n) = Gauss_factorial(n, n) modulo n. (Definition of the Gauss factorial in A216919.) - Peter Luschny, Oct 20 2012
EXAMPLE
Phi-torial of 12 equals 1*5*7*11=385 which leaves a remainder of 1 when divided by 12.
Phi-torial of 14 equals 1*3*5*9*11*13=19305 which leaves a remainder of 13 when divided by 14.
MAPLE
copr := proc(n) local a, k ; a := {1} ; for k from 2 to n-1 do if gcd(k, n) = 1 then a := a union {k} ; fi; od: a ; end:
A001783 := proc(n) local c; mul(c, c= copr(n)) ; end:
A160377 := proc(n) A001783(n) mod n ; end: seq( A160377(n), n=1..100) ; # R. J. Mathar, May 21 2009
A160377 := proc(n) local k, r; r := 1:
for k to n do if igcd(n, k) = 1 then r := modp(r*k, n) fi od;
r end: seq( A160377(i), i=1..88); # Peter Luschny, Oct 20 2012
MATHEMATICA
Table[nn = n; a = Select[Range[nn], CoprimeQ[#, nn] &];
Mod[Apply[Times, a], nn], {n, 1, 88}] (* Geoffrey Critzer, Jan 03 2015 *)
PROG
(Sage)
def A160377(n):
r = 1
for k in (1..n):
if gcd(n, k) == 1: r = mod(r*k, n)
return r
[A160377(n) for n in (1..88)] # Peter Luschny, Oct 20 2012
CROSSREFS
Cf. A124740 (one of just four listing "product of coprimes").
Sequence in context: A280701 A064830 A355582 * A373028 A269165 A319655
KEYWORD
nonn
AUTHOR
J. M. Bergot, May 11 2009
EXTENSIONS
Edited and extended by R. J. Mathar and Max Alekseyev, May 21 2009
STATUS
approved