OFFSET
1,3
COMMENTS
Is a(n)<> 1 iff n in A033948, n>2? [R. J. Mathar, May 21 2009]
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000
John B. Cosgrave and Karl Dilcher, Extensions of the Gauss-Wilson Theorem, Integers: Electronic Journal of Combinatorial Number Theory, Vol. 8 (2008), Article #A39.
Eric Weisstein's World of Mathematics, Wilson's Theorem.
FORMULA
a(n) = A001783(n) mod n. - R. J. Mathar, May 21 2009
For n>2, a(n)=n-1 if A060594(n)=2; otherwise a(n)=1. - Max Alekseyev
a(n) = Gauss_factorial(n, n) modulo n. (Definition of the Gauss factorial in A216919.) - Peter Luschny, Oct 20 2012
EXAMPLE
Phi-torial of 12 equals 1*5*7*11=385 which leaves a remainder of 1 when divided by 12.
Phi-torial of 14 equals 1*3*5*9*11*13=19305 which leaves a remainder of 13 when divided by 14.
MAPLE
copr := proc(n) local a, k ; a := {1} ; for k from 2 to n-1 do if gcd(k, n) = 1 then a := a union {k} ; fi; od: a ; end:
A001783 := proc(n) local c; mul(c, c= copr(n)) ; end:
A160377 := proc(n) local k, r; r := 1:
for k to n do if igcd(n, k) = 1 then r := modp(r*k, n) fi od;
r end: seq( A160377(i), i=1..88); # Peter Luschny, Oct 20 2012
MATHEMATICA
Table[nn = n; a = Select[Range[nn], CoprimeQ[#, nn] &];
Mod[Apply[Times, a], nn], {n, 1, 88}] (* Geoffrey Critzer, Jan 03 2015 *)
PROG
(Sage)
def A160377(n):
r = 1
for k in (1..n):
if gcd(n, k) == 1: r = mod(r*k, n)
return r
[A160377(n) for n in (1..88)] # Peter Luschny, Oct 20 2012
CROSSREFS
KEYWORD
nonn
AUTHOR
J. M. Bergot, May 11 2009
EXTENSIONS
Edited and extended by R. J. Mathar and Max Alekseyev, May 21 2009
STATUS
approved