OFFSET
0,1
COMMENTS
Also the numerators of the series expansion of log(1+x). Denominators are A028310. - Robert G. Wilson v, Aug 14 2015
LINKS
Antti Karttunen, Table of n, a(n) for n = 0..10000
Wikipedia, Dirichlet eta function
Index entries for linear recurrences with constant coefficients, signature (-1).
FORMULA
G.f.: x/(1+x).
Euler transform of length 2 sequence [-1, 1]. - Michael Somos, Jul 05 2009
Moebius transform is length 2 sequence [1, -2]. - Michael Somos, Jul 05 2009
a(n) is multiplicative with a(2^e) = -1 if e > 0, a(p^e) = 1 if p > 2. - Michael Somos, Jul 05 2009
Dirichlet g.f.: zeta(s) * (1 - 2^(1-s)). - Michael Somos, Jul 05 2009
Also, Dirichlet g.f.: eta(s). - Ralf Stephan, Mar 25 2015
E.g.f.: 1 - exp(-x). - Alejandro J. Becerra Jr., Feb 16 2021
EXAMPLE
G.f. = x - x^2 + x^3 - x^4 + x^5 - x^6 + x^7 - x^8 + x^9 - x^10 + ... - Michael Somos, Feb 20 2024
MATHEMATICA
PadRight[{0}, 120, {-1, 1}] (* Harvey P. Dale, Aug 20 2012 *)
Join[{0}, LinearRecurrence[{-1}, {1}, 101]] (* Ray Chandler, Aug 12 2015 *)
f[n_] := 0^n - (-1)^n; f[0] = 0; Array[f, 105, 0] (* or *)
CoefficientList[ Series[ x/(1 + x), {x, 0, 80}], x] (* or *)
Numerator@ CoefficientList[ Series[ Log[1 + x], {x, 0, 80}], x] (* Robert G. Wilson v, Aug 14 2015 *)
PROG
(PARI) {a(n) = if( n<1, 0, -(-1)^n )}; /* Michael Somos, Jul 05 2009 */
(Magma) [0^n-(-1)^n: n in [0..100]]; // Vincenzo Librandi, Aug 15 2015
(Magma) [0] cat &cat[ [1, -1]: n in [1..80] ]; // Vincenzo Librandi, Aug 15 2015
CROSSREFS
KEYWORD
easy,sign,mult
AUTHOR
Henry Bottomley, Jun 08 2001
STATUS
approved