This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A062157 a(n) = 0^n-(-1)^n. 15
 0, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Also the numerators of the series expansion of log(1+x). Denominators are A028310. - Robert G. Wilson v, Aug 14 2015 LINKS Wikipedia, Dirichlet eta function Index entries for linear recurrences with constant coefficients, signature (-1). FORMULA a(n) = A000007(n) - A033999(n) = A062160(0, n). G.f.: x/(1+x). a(n) = -[(n+2) mod (n+1)]*(-1)^n, with n>=0. - Paolo P. Lava, Aug 28 2007 Euler transform of length 2 sequence [ -1, 1]. - Michael Somos, Jul 05 2009 Moebius transform is length 2 sequence [ 1, -2]. - Michael Somos, Jul 05 2009 a(n) is multiplicative with a(2^e) = -1 if e>0, a(p^e) = 1 if p>2. - Michael Somos, Jul 05 2009 Dirichlet g.f.: zeta(s) * (1 - 2^(1-s)). - Michael Somos, Jul 05 2009 Also, Dirichlet g.f.: eta(s). - Ralf Stephan, Mar 25 2015 MATHEMATICA PadRight[{0}, 120, {-1, 1}] (* Harvey P. Dale, Aug 20 2012 *) Join[{0}, LinearRecurrence[{-1}, {1}, 101]] (* Ray Chandler, Aug 12 2015 *) f[n_] := 0^n - (-1)^n; f[0] = 0; Array[f, 105, 0] (* or *) CoefficientList[ Series[ x/(1 + x), {x, 0, 80}], x] (* or *) Numerator@ CoefficientList[ Series[ Log[1 + x], {x, 0, 80}], x] (* Robert G. Wilson v, Aug 14 2015 *) PROG (PARI) {a(n) = if( n<1, 0, -(-1)^n )} /* Michael Somos, Jul 05 2009 */ (MAGMA) [0^n-(-1)^n: n in [0..100]] /* or */ [0] cat &cat[ [1, -1]: n in [1..80] ];; // Vincenzo Librandi, Aug 15 2015 CROSSREFS Convolution inverse of A019590. Sequence in context: A165596 A226523 A070238 * A103131 A112347 A057427 Adjacent sequences:  A062154 A062155 A062156 * A062158 A062159 A062160 KEYWORD easy,sign,mult AUTHOR Henry Bottomley, Jun 08 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 13 03:41 EST 2019. Contains 329968 sequences. (Running on oeis4.)