Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #39 Mar 23 2022 12:07:32
%S 0,1,-1,-1,-1,-1,-1,1,-1,-1,-1,1,-1,-1,1,1,-1,-1,-1,1,1,-1,-1,1,-1,-1,
%T -1,1,-1,1,-1,1,1,-1,1,1,-1,-1,1,1,-1,1,-1,1,1,-1,-1,1,-1,-1,1,1,-1,
%U -1,1,1,1,-1,-1,1,-1,-1,1,1,1,1,-1,1,1,1,-1,1,-1,-1,1,1,1,1,-1,1,-1,-1,-1,1,1,-1,1,1,-1,1,1,1,1,-1,1,1,-1,-1,1,1,-1,1
%N The product of the residues in [1,n] relatively prime to n, taken modulo n.
%C Old name was: Minimal residue (in absolute value) of A001783(n) (mod n).
%C If the positive representation for integers modulo n is used this is A160377. Here the symmetric (or minimal) representation for the integers modulo n is used.
%C From Gauss's generalization of Wilson's theorem (see Weisstein link) it follows that, for n>1, a(n) = -1 if and only if there exists a primitive root modulo n (cf. the Hardy and Wright reference, Theorem 129. p. 102). (Adapted from a comment by Vladimir Shevelev in A001783). - _Peter Luschny_, Oct 20 2012
%D G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth ed., Clarendon Press, Oxford, 2003, Theorem 129, p. 102.
%H Antti Karttunen, <a href="/A103131/b103131.txt">Table of n, a(n) for n = 1..16385</a>
%H J. B. Cosgrave and K. Dilcher, <a href="http://www.emis.de/journals/INTEGERS/papers/i39/i39.Abstract.html"> Extensions of the Gauss-Wilson Theorem</a>, Integers: Electronic Journal of Combinatorial Number Theory, 8 (2008).
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Wilsonstheorem.html">Wilson's theorem</a>
%F For n>2, a(n)=-1 if A060594(n)=2, or equivalently if n is in A033948; otherwise a(n)=1. - _Max Alekseyev_, May 26 2009; edited by _Peter Luschny_, May 25 2017.
%F a(n) = Gauss_factorial(n, n) modulo n. (Definition of the Gauss factorial in A216919.) - _Peter Luschny_, Oct 20 2012
%F For n > 2, a(n) = (-1)^A211487(n). (See _Max Alekseyev_'s formula above.) - _Antti Karttunen_, Aug 22 2017
%e The residues in [1, 22] relatively prime to 22 are [1, 3, 5, 7, 9, 13, 15, 17, 19, 21] and the product of those residues is -1 modulo 22.
%p A103131 := proc(n) local k, r; r := 1;
%p for k to n do if igcd(n,k) = 1 then r := mods(r*k, n) fi od;
%p r end: seq(A103131(i), i=1..102); # _Peter Luschny_, Oct 20 2012
%t a[n_] := If[IntegerQ[PrimitiveRoot[n]], -1, 1]; a[1] = 0; a[2] = 1; Table[a[n], {n, 1, 102}] (* _Jean-François Alcover_, Nov 09 2012, after _Max Alekseyev_ *)
%o (Sage)
%o def A103131(n):
%o def smod(a,n): return a-n*ceil(a/n-1/2) if n != 0 else a
%o r = 1
%o for k in (1..n):
%o if gcd(n, k) == 1: r = smod(r*k, n)
%o return r
%o [A103131(n) for n in (1..102)] # _Peter Luschny_, Oct 20 2012
%o (PARI)
%o A211487(n) = if(n%2, !!isprimepower(n), (n==2 || n==4 || (isprimepower(n/2, &n) && n>2))); \\ After _Charles R Greathouse IV_'s code for A033948.
%o A103131(n) = if(n<=2,n-1,(-1)^A211487(n)); \\ _Antti Karttunen_, Aug 22 2017
%Y Cf. A001783, A160377, A211487, A216919.
%K sign
%O 1,1
%A _Eric W. Weisstein_, Jan 23 2005
%E Definition rewritten by _Max Alekseyev_, May 26 2009
%E New name from _Peter Luschny_, Oct 20 2012
%E a(2) set to 1 by _Peter Luschny_, May 25 2017