login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A152487
Triangle read by rows, 0<=k<=n: T(n,k) = Levenshtein distance of n and k in binary representation.
10
0, 1, 0, 1, 1, 0, 2, 1, 1, 0, 2, 2, 1, 2, 0, 2, 2, 1, 1, 1, 0, 2, 2, 1, 1, 1, 2, 0, 3, 2, 2, 1, 2, 1, 1, 0, 3, 3, 2, 3, 1, 2, 2, 3, 0, 3, 3, 2, 2, 1, 1, 2, 2, 1, 0, 3, 3, 2, 2, 1, 1, 1, 2, 1, 2, 0, 3, 3, 2, 2, 2, 1, 2, 1, 2, 1, 1, 0, 3, 3, 2, 2, 1, 2, 1, 2, 1, 2, 2, 3, 0, 3, 3, 2, 2, 2, 1, 1, 1, 2, 1, 2, 2, 1, 0
OFFSET
0,7
COMMENTS
T(n,k) gives number of editing steps (replace, delete and insert) to transform n to k in binary representations;
row sums give A152488; central terms give A057427;
T(n,k) <= Hamming-distance(n,k) for n and k with A070939(n)=A070939(k);
T(n,0) = A000523(n+1);
T(n,1) = A000523(n) for n>0;
T(n,3) = A106348(n-2) for n>2;
T(n,n-1) = A091090(n-1) for n>0;
T(n,n) = A000004(n);
T(A000290(n),n) = A091092(n).
T(n,k) >= A322285(n,k) - Pontus von Brömssen, Dec 02 2018
FORMULA
T(n,k) = f(n,k) with f(x,y) = if x>y then f(y,x) else if x<=1 then Log2(y)-0^y+(1-x)*0^(y+1-2^(y+1)) else Min{f([x/2],[y/2]) + (x mod 2) XOR (y mod 2), f([x/2],y)+1, f(x,[y/2])+1}, where Log2=A000523.
EXAMPLE
The triangle T(n, k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 ...
0: 0
1: 1 0
2: 1 1 0
3: 2 1 1 0
4: 2 2 1 2 0
5: 2 2 1 1 1 0
6: 2 2 1 1 1 2 0
7: 3 2 2 1 2 1 1 0
8: 3 3 2 3 1 2 2 3 0
9: 3 3 2 2 1 1 2 2 1 0
10: 3 3 2 2 1 1 1 2 1 2 0
11: 3 3 2 2 2 1 2 1 2 1 1 0
12: 3 3 2 2 1 2 1 2 1 2 2 3 0
13: 3 3 2 2 2 1 1 1 2 1 2 2 1 0
...
The distance between the binary representations of 46 and 25 is 4 (via the edits "101110" - "10111" - "10011" - "11011" - "11001"), so T(46,25) = 4. - Pontus von Brömssen, Dec 02 2018
KEYWORD
nonn,base,tabl
AUTHOR
Reinhard Zumkeller, Dec 06 2008
STATUS
approved