login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A057427 a(n) = 1 if n > 0, a(n) = 0 if n = 0; series expansion of x/(1-x). 194

%I

%S 0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

%T 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

%U 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1

%N a(n) = 1 if n > 0, a(n) = 0 if n = 0; series expansion of x/(1-x).

%C Parity of (n+1)-st prime, A000040(n+1). - _Philippe Deléham_, Apr 04 2009

%C Decimal expansion of 1/90.

%C Partial sums of A063524 (characteristic function of 1). - _Jeremy Gardiner_, Sep 08 2002

%C Characteristic function of positive integers. - _Franklin T. Adams-Watters_, Aug 01 2011

%C Number of binary bracelets of n beads, 0 of them 0. Number of binary bracelets of n beads, 1 of them 0. Number of binary bracelets of n beads, 0 of them 0, with 00 prohibited. For n>=2, a(n-1) is the number of binary bracelets of n beads, one of them 0, with 00 prohibited. - _Washington Bomfim_, Aug 27 2008

%C a(A000027(n)) = 1; a(A000004(n)) = 0. - _Reinhard Zumkeller_, Oct 11 2008

%C Central terms of the triangle in A152487. - _Reinhard Zumkeller_, Dec 06 2008

%C This is sgn(n) (or sign(n), or signum(n)) restricted to nonnegative integers. See sequence A261012 for a version that extends the sequence backwards to offset -1.

%D T. M. MacRobert, Functions of a Complex Variable, 4th ed., Macmillan and Co., London, 1958, p. 90.

%H Vincenzo Librandi, <a href="/A057427/b057427.txt">Table of n, a(n) for n = 0..200</a>

%H <a href="/index/Ch#char_fns">Index entries for characteristic functions</a>

%H <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (1).

%F G.f.: x / (1 - x).

%F G.f.: Sum_{k>=0} 2^k * x^(2^k) / (1 + x^(2^k)). - _Michael Somos_, Sep 11 2005

%F a(n) = A000007(0^n). - _Jaume Oliver Lafont_, Mar 19 2009

%F a(n) = - a(-n) for all n in Z if a(n) is treated as sgn(n). - _Michael Somos_, Aug 17 2015

%F Sum{k<0} a(k) * x^k = 1 / (1 - x) if abs(x) > 1. - _Michael Somos_, Aug 17 2015

%F Dirichlet g.f.: zeta(s) - 1. - _Álvar Ibeas_, Nov 29 2015; corrected by _Francois Oger_, Oct 26 2019

%F a(n) = A001065(n+1) - A048050(n+1). - _Omar E. Pol_, Apr 30 2018

%F E.g.f.: e^x - 1. - _Francois Oger_, Oct 26 2019

%e 1/90 = .0111111111111111111...

%e G.f. = x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10 + x^11 + ...

%p with(numtheory); A057427:=n->signum(n); seq(A057427(k), k=0..50); # _Wesley Ivan Hurt_, Oct 22 2013

%t Table[Sign[n], {n, 0, 104}] (* _Arkadiusz Wesolowski_, Sep 16 2012 *)

%t CoefficientList[Series[x/((1 - x)), {x, 0, 25}], x]

%t LinearRecurrence[{1, 0}, {0, 1}, 105]

%t Array[Sign, 105, 0]

%t N[1/9, 111]

%o (PARI) {a(n) = sign(n)};

%o (PARI) /* n>=0 */ a(n)=!!n \\ _Jaume Oliver Lafont_, Mar 19 2009

%o (Haskell)

%o a057427 = signum

%o a057427_list = 0 : [1, 1 ..] -- _Reinhard Zumkeller_, Nov 28 2012

%Y Cf. A000004, A000007, A000012, A000027, A000040, A063524, A152487.

%Y See also A261012.

%K nonn,easy,mult,nice,cons,changed

%O 0,1

%A _Henry Bottomley_, Sep 05 2000

%E Entry edited at the suggestion of _Robert G. Wilson v_ by _N. J. A. Sloane_, Aug 16 2015

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 6 16:24 EST 2019. Contains 329808 sequences. (Running on oeis4.)