login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A144903
Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of x/((1-x-x^3)*(1-x)^(k-1)).
11
0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 2, 1, 1, 0, 1, 3, 3, 2, 1, 0, 1, 4, 6, 5, 3, 1, 0, 1, 5, 10, 11, 8, 4, 2, 0, 1, 6, 15, 21, 19, 12, 6, 3, 0, 1, 7, 21, 36, 40, 31, 18, 9, 4, 0, 1, 8, 28, 57, 76, 71, 49, 27, 13, 6, 0, 1, 9, 36, 85, 133, 147, 120, 76, 40, 19, 9, 0, 1, 10, 45, 121, 218, 280, 267, 196, 116, 59, 28, 13
OFFSET
0,13
LINKS
FORMULA
G.f. of column k: x/((1-x-x^3)*(1-x)^(k-1)).
A(n, n) = A144904(n).
From G. C. Greubel, Aug 01 2022: (Start)
A(n, k) = Sum_{j=0..n-1} binomial(k+j-2, j)*A000930(n-j-1), with A(0, k) = 0.
T(n, k) = Sum_{j=0..k-1} binomial(n-k-j-2, j)*A000930(k-j-1), with T(n, 0) = 0.
T(2*n, n) = A144904(n). (End)
EXAMPLE
Square array (A(n,k)) begins:
0, 0, 0, 0, 0, 0, 0 ... A000004;
1, 1, 1, 1, 1, 1, 1 ... A000012;
0, 1, 2, 3, 4, 5, 6 ... A001477;
0, 1, 3, 6, 10, 15, 21 ... A000217;
1, 2, 5, 11, 21, 36, 57 ... A050407;
1, 3, 8, 19, 40, 76, 133 ... ;
1, 4, 12, 31, 71, 147, 200 ... A027658;
Antidiagonal triangle (T(n,k)) begins as:
0;
0, 1;
0, 1, 0;
0, 1, 1, 0;
0, 1, 2, 1, 1;
0, 1, 3, 3, 2, 1;
0, 1, 4, 6, 5, 3, 1;
0, 1, 5, 10, 11, 8, 4, 2;
0, 1, 6, 15, 21, 19, 12, 6, 3;
MAPLE
A:= proc(n, k) coeftayl (x/ (1-x-x^3)/ (1-x)^(k-1), x=0, n) end:
seq(seq(A(n, d-n), n=0..d), d=0..13);
MATHEMATICA
(* First program *)
a[n_, k_] := SeriesCoefficient[x/((1-x-x^3)*(1-x)^(k-1)), {x, 0, n}];
Table[a[n-k, k], {n, 0, 12}, {k, n, 0, -1}]//Flatten (* Jean-François Alcover, Jan 15 2014 *)
(* Second Program *)
A000930[n_]:= A000930[n]= Sum[Binomial[n-2*j, j], {j, 0, Floor[n/3]}];
T[n_, k_]:= T[n, k]= If[k==0, 0, Sum[Binomial[n-k+j-2, j]*A000930[k-j-1], {j, 0, k- 1}]];
Table[T[n, k], {n, 0, 15}, {k, 0, n}]//Flatten (* G. C. Greubel, Aug 01 2022 *)
PROG
(Magma)
A000930:= func< n | (&+[Binomial(n-2*j, j): j in [0..Floor(n/3)]]) >;
A144903:= func< n, k | k eq 0 select 0 else (&+[Binomial(n-k+j-2, j)*A000930(k-j-1) : j in [0..k-1]]) >;
[A144903(n, k): k in [0..n], n in [0..15]]; // G. C. Greubel, Aug 01 2022
(SageMath)
def A000930(n): return sum(binomial(n-2*j, j) for j in (0..(n//3)))
def A144903(n, k):
if (k==0): return 0
else: return sum(binomial(n-k+j-2, j)*A000930(k-j-1) for j in (0..k-1))
flatten([[A144903(n, k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Aug 01 2022
CROSSREFS
Rows 0-4, 6 give: A000004, A000012, A001477, A000217, A050407(n+3), A027658.
Columns 0-9 give: A078012 and A135851(n+2), A078012(n+2) and A135851(n+4), A077868(n-1) for n>0, A050228(n-1) for n>0, A226405, A144898, A144899, A144900, A144901, A144902.
Main diagonal gives: A144904.
Cf. A000930.
Sequence in context: A060959 A342689 A077042 * A356266 A108934 A108947
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Sep 24 2008
STATUS
approved