login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A144900
Expansion of x/((1-x-x^3)*(1-x)^6).
8
0, 1, 7, 28, 85, 218, 498, 1045, 2055, 3840, 6887, 11945, 20153, 33228, 53741, 85522, 134254, 208344, 320200, 488103, 738951, 1112281, 1666164, 2485845, 3696406, 5481325, 8109676, 11975993, 17658694, 26005706, 38259955, 56243281, 82625979, 121321831, 178067054
OFFSET
0,3
LINKS
Index entries for linear recurrences with constant coefficients, signature (7,-21,36,-41,36,-27,16,-6,1).
FORMULA
G.f.: x/((1-x-x^3)*(1-x)^6).
From G. C. Greubel, Jul 27 2022: (Start)
a(n) = Sum_{j=0..floor((n+5)/3)} binomial(n-2*j+5, j+6).
a(n) = A099567(n+5, 6). (End)
MAPLE
a:= n-> (Matrix(9, (i, j)-> if i=j-1 then 1 elif j=1 then [7, -21, 36, -41, 36, -27, 16, -6, 1][i] else 0 fi)^n)[1, 2]: seq(a(n), n=0..40);
MATHEMATICA
CoefficientList[Series[x/((1-x-x^3)(1-x)^6), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 06 2013 *)
LinearRecurrence[{7, -21, 36, -41, 36, -27, 16, -6, 1}, {0, 1, 7, 28, 85, 218, 498, 1045, 2055}, 40] (* Harvey P. Dale, Mar 02 2016 *)
PROG
(Magma)
A144900:= func< n | n eq 0 select 0 else (&+[Binomial(n-2*j+5, j+6): j in [0..Floor((n+5)/3)]]) >;
[A144900(n): n in [0..40]]; // G. C. Greubel, Jul 27 2022
(SageMath)
def A144900(n): return sum(binomial(n-2*j+5, j+6) for j in (0..((n+5)//3)))
[A144900(n) for n in (0..40)] # G. C. Greubel, Jul 27 2022
CROSSREFS
7th column of A144903.
Cf. A099567.
Sequence in context: A145135 A369807 A221141 * A054469 A369806 A156928
KEYWORD
nonn,easy
AUTHOR
Alois P. Heinz, Sep 24 2008
STATUS
approved