login
A144902
Expansion of x/((1-x-x^3)*(1-x)^8).
8
0, 1, 9, 45, 166, 505, 1342, 3224, 7161, 14938, 29602, 56211, 102973, 182963, 316694, 535947, 889454, 1451305, 2333356, 3703510, 5812615, 9034001, 13921551, 21294946, 32364747, 48915873, 73576675, 110213470, 164508959, 244810154, 363371304, 538175735
OFFSET
0,3
LINKS
Index entries for linear recurrences with constant coefficients, signature (9,-36,85,-134,154,-140,106,-65,29,-8,1).
FORMULA
G.f.: x/((1-x-x^3)*(1-x)^8).
From G. C. Greubel, Jul 27 2022: (Start)
a(n) = Sum_{j=0..floor((n+7)/3)} binomial(n-2*j+7, j+8).
a(n) = A099567(n+7, 8). (End)
MAPLE
a:= n-> (Matrix(11, (i, j)-> if i=j-1 then 1 elif j=1 then [9, -36, 85, -134, 154, -140, 106, -65, 29, -8, 1][i] else 0 fi)^n)[1, 2]: seq(a(n), n=0..40);
MATHEMATICA
CoefficientList[Series[x/((1-x-x^3)(1-x)^8), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 06 2013 *)
PROG
(Magma)
A144903:= func< n | n eq 0 select 0 else (&+[Binomial(n-2*j+7, j+8): j in [0..Floor((n+7)/3)]]) >;
[A144903(n): n in [0..40]]; // G. C. Greubel, Jul 27 2022
(SageMath)
def A144903(n): return sum(binomial(n-2*j+7, j+8) for j in (0..((n+7)//3)))
[A144903(n) for n in (0..40)] # G. C. Greubel, Jul 27 2022
CROSSREFS
9th column of A144903.
Cf. A099567.
Sequence in context: A145458 A145137 A221142 * A128643 A276280 A036826
KEYWORD
nonn,easy
AUTHOR
Alois P. Heinz, Sep 24 2008
STATUS
approved