login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A099567
Riordan array (1/(1-x-x^3), 1/(1-x)).
12
1, 1, 1, 1, 2, 1, 2, 3, 3, 1, 3, 5, 6, 4, 1, 4, 8, 11, 10, 5, 1, 6, 12, 19, 21, 15, 6, 1, 9, 18, 31, 40, 36, 21, 7, 1, 13, 27, 49, 71, 76, 57, 28, 8, 1, 19, 40, 76, 120, 147, 133, 85, 36, 9, 1, 28, 59, 116, 196, 267, 280, 218, 121, 45, 10, 1, 41, 87, 175, 312, 463, 547, 498, 339, 166, 55, 11, 1
OFFSET
0,5
COMMENTS
Inverse matrix is A099569.
Subtriangle of the triangle in A144903. - Philippe Deléham, Dec 29 2013
FORMULA
Number triangle T(n, k) = Sum_{j=0..floor(n/3)} binomial(n-2*j, k+j).
Columns have g.f. (1/(1-x-x^3))*(x/(1-x))^k.
Sum_{k=0..n} T(n, k) = A099568(n).
T(n,0) = A000930(n), T(n,n) = 1, T(n,k) = T(n-1,k-1) + T(n-1,k) for 0<k<n. - Philippe Deléham, Dec 29 2013
exp(x) * e.g.f. for row n = e.g.f. for diagonal n. For example, for n = 3 we have exp(x)*(2 + 3*x + 3*x^2/2! + x^3/3!) = 2 + 5*x + 11*x^2/2! + 21*x^3/3! + 36*x^4/4! + .... The same property holds more generally for Riordan arrays of the form ( f(x), x/(1 - x) ). - Peter Bala, Dec 21 2014
From G. C. Greubel, Jul 27 2022: (Start)
T(n, n-1) = n, for n >= 1.
T(n, n-2) = A000217(n-1), for n >= 2.
T(n, n-3) = A050407(n+1), for n >= 3.
T(2*n, n) = A144904(n+1), for n >= 1. (End)
EXAMPLE
Rows begin:
1;
1, 1;
1, 2, 1;
2, 3, 3, 1;
3, 5, 6, 4, 1;
4, 8, 11, 10, 5, 1;
6, 12, 19, 21, 15, 6, 1;
9, 18, 31, 40, 36, 21, 7, 1;
13, 27, 49, 71, 76, 57, 28, 8, 1;
19, 40, 76, 120, 147, 133, 85, 36, 9, 1;
28, 59, 116, 196, 267, 280, 218, 121, 45, 10, 1;
MATHEMATICA
T[n_, 0]:=T[n, 0]=HypergeometricPFQ[{(1-n)/3, (2-n)/3, -n/3}, {(1-n)/2, -n/2}, -27/4];
T[n_, k_]:= T[n, k]= If[k==n, 1, T[n-1, k-1] +T[n-1, k]];
Table[T[n, k], {n, 0, 15}, {k, 0, n}]//Flatten (* G. C. Greubel, Apr 28 2017 *)
PROG
(Magma)
T:= func< n, k | (&+[Binomial(n-2*j, k+j): j in [0..Floor(n/3)]]) >;
[[T(n, k): k in [0..n]]: n in [0..15]]; // G. C. Greubel, Jul 27 2022
(SageMath)
@CachedFunction
def A099567(n, k): return sum( binomial(n-2*j, k+j) for j in (0..(n//3)) )
flatten([[A099567(n, k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Jul 27 2022
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Oct 22 2004
STATUS
approved