The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A202191 Triangle T(n,m) = coefficient of x^n in expansion of [x/(1-x-x^3)]^m = sum(n>=m, T(n,m) x^n). 1
 1, 1, 1, 1, 2, 1, 2, 3, 3, 1, 3, 6, 6, 4, 1, 4, 11, 13, 10, 5, 1, 6, 18, 27, 24, 15, 6, 1, 9, 30, 51, 55, 40, 21, 7, 1, 13, 50, 94, 116, 100, 62, 28, 8, 1, 19, 81, 171, 234, 231, 168, 91, 36, 9, 1, 28, 130, 303, 460, 505, 420, 266, 128, 45, 10, 1, 41, 208 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 COMMENTS The matrix inverse starts 1; -1,1; 1,-2,1; -2,3,-3,1; 5,-6,6,-4,1; -11,15,-13,10,-5,1; 24,-36,33,-24,15,-6,1; -57,84,-84,63,-40,21,-7,1; 141,-204,208,-168,110,-62,28,-8,1. - R. J. Mathar, Mar 15 2013 LINKS FORMULA T(n,m)=sum(k=0..n-m, binomial(k,(n-m-k)/2)*binomial(m+k-1,m-1)*((-1)^(n-m-k)+1))/2. EXAMPLE 1 1, 1, 1, 2, 1, 2, 3, 3, 1, 3, 6, 6, 4, 1, 4, 11, 13, 10, 5, 1, 6, 18, 27, 24, 15, 6, 1 MAPLE A202191 := proc(n, k)     (x/(1-x-x^3))^k ;     coeftayl(%, x=0, n) ; end proc: # R. J. Mathar, Mar 15 2013 PROG (Maxima) T(n, m):=sum(binomial(k, (n-m-k)/2)*binomial(m+k-1, m-1)*((-1)^(n-m-k)+1), k, 0, n-m)/2; CROSSREFS Sequence in context: A267177 A099567 A140530 * A052250 A333878 A099569 Adjacent sequences:  A202188 A202189 A202190 * A202192 A202193 A202194 KEYWORD nonn,tabl AUTHOR Vladimir Kruchinin, Dec 14 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 23 11:52 EDT 2021. Contains 346259 sequences. (Running on oeis4.)