login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A303842
Triangle read by rows: T(s,n) (s>=1 and 2<=n<=s+1) = number of trees with n nodes and positive integer edge labels with label sum s.
2
1, 1, 1, 1, 1, 2, 1, 2, 3, 3, 1, 2, 6, 6, 6, 1, 3, 9, 15, 16, 11, 1, 3, 13, 26, 43, 37, 23, 1, 4, 17, 46, 88, 116, 96, 47, 1, 4, 23, 68, 169, 273, 329, 239, 106, 1, 5, 28, 103, 287, 585, 869, 918, 622, 235, 1, 5, 35, 141, 467, 1104, 2031, 2695, 2609, 1607, 551
OFFSET
1,6
LINKS
R. J. Mathar, Labeled Trees with fixed node label sum, vixra:1805.0205 (2018).
EXAMPLE
The triangle starts
1;
1 1;
1 1 2;
1 2 3 3;
1 2 6 6 6;
1 3 9 15 16 11;
1 3 13 26 43 37 23;
1 4 17 46 88 116 96 47;
1 4 23 68 169 273 329 239 106;
1 5 28 103 287 585 869 918 622 235;
1 5 35 141 467 1104 2031 2695 2609 1607 551;
1 6 42 195 711 1972 4211 6882 8399 ... 4235 1301;
1 6 50 253 1051 3270 8108 15513 23152 ... ... ;
1 7 58 330 1489 5222 14552 32191 56291 ... ... ;
1 7 68 412 2063 7958 24846 62014 124958 ... ... ;
PROG
(PARI)
EulerMT(u)={my(n=#u, p=x*Ser(u), vars=variables(p)); Vec(exp( sum(i=1, n, substvec(p + O(x*x^(n\i)), vars, apply(v->v^i, vars))/i ))-1)}
b(n)={my(v=[1]); for(i=1, n, v=concat([1], v + EulerMT(y*v))); Ser(v)*y*(1-x)}
seq(n)={my(g=b(n)); Vec(g + (substvec(g, [x, y], [x^2, y^2]) - g^2)*x/(2*(1-x)) - y)}
{my(A=seq(15)); for(n=1, #A, print(Vecrev(A[n]/y^2)))} \\ Andrew Howroyd, May 20 2018
CROSSREFS
Cf. A303841 (labeled nodes), A000055 (diagonal), A027852 (subdiagonal), A303833 (subdiagonal), A304914 (row sums).
Sequence in context: A227909 A301984 A210805 * A057041 A267177 A099567
KEYWORD
nonn,tabl
AUTHOR
R. J. Mathar, May 01 2018
STATUS
approved