login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A210805
Triangle of coefficients of polynomials u(n,x) jointly generated with A210806; see the Formula section.
3
1, 1, 1, 1, 1, 2, 1, 2, 3, 3, 1, 2, 6, 6, 5, 1, 3, 8, 14, 12, 8, 1, 3, 12, 22, 31, 23, 13, 1, 4, 15, 37, 56, 65, 43, 21, 1, 4, 20, 52, 102, 132, 132, 79, 34, 1, 5, 24, 76, 160, 260, 296, 261, 143, 55, 1, 5, 30, 100, 250, 446, 626, 639, 506, 256, 89, 1, 6, 35, 135, 360
OFFSET
1,6
COMMENTS
Row n starts with 1 and ends with F(n), where F=A000045 (Fibonacci numbers).
For a discussion and guide to related arrays, see A208510.
FORMULA
u(n,x)=u(n-1,x)+x*v(n-1,x),
v(n,x)=(x+2)*u(n-1,x)+(x-1)*v(n-1,x)-1,
where u(1,x)=1, v(1,x)=1.
EXAMPLE
First five rows:
1
1...1
1...1...2
1...2...3...3
1...2...6...6...5
First three polynomials u(n,x): 1, 1 + x, 1 + x + 2x^2.
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + (x + j)*v[n - 1, x] + c;
d[x_] := h + x; e[x_] := p + x;
v[n_, x_] := d[x]*u[n - 1, x] + e[x]*v[n - 1, x] + f;
j = 0; c = 0; h = 2; p = -1; f = -1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A210805 *)
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A210806 *)
CROSSREFS
Sequence in context: A328471 A227909 A301984 * A303842 A057041 A267177
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Mar 27 2012
STATUS
approved