login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A210802
Triangle of coefficients of polynomials v(n,x) jointly generated with A210801; see the Formula section.
3
1, 2, 2, 5, 5, 3, 8, 16, 11, 5, 17, 34, 40, 22, 8, 26, 82, 107, 93, 43, 13, 53, 163, 287, 287, 201, 81, 21, 80, 352, 674, 862, 709, 419, 150, 34, 161, 676, 1592, 2272, 2326, 1641, 845, 273, 55, 242, 1378, 3482, 5878, 6797, 5863, 3638, 1666, 491, 89, 485
OFFSET
1,2
COMMENTS
Row n ends with F(n+1), where F=A000045 (Fibonacci numbers).
Row sums: A003462
Alternating row sums: A077898
For a discussion and guide to related arrays, see A208510.
FORMULA
u(n,x)=u(n-1,x)+(x+1)*v(n-1,x)+1,
v(n,x)=(x+2)*u(n-1,x)+(x-1)*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
EXAMPLE
First five rows:
1
2....2
5....5....3
8....16...11...5
17...34...40...22...8
First three polynomials v(n,x): 1, 2 + 2x, 5 + 5x + 3x^2
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + (x + j)*v[n - 1, x] + c;
d[x_] := h + x; e[x_] := p + x;
v[n_, x_] := d[x]*u[n - 1, x] + e[x]*v[n - 1, x] + f;
j = 1; c = 1; h = 2; p = -1; f = 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A210801 *)
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A210802 *)
Table[u[n, x] /. x -> 1, {n, 1, z}] (* A003462 *)
Table[v[n, x] /. x -> 1, {n, 1, z}] (* A003462 *)
Table[u[n, x] /. x -> -1, {n, 1, z}] (* A000027 *)
Table[v[n, x] /. x -> -1, {n, 1, z}] (* A077898 *)
CROSSREFS
Sequence in context: A243941 A161622 A116559 * A257943 A008280 A239005
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Mar 27 2012
STATUS
approved