login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A116559
Expansion of g.f. x*(1+x+2*x^2+2*x^3+5*x^4+5*x^5-3*x^6+2*x^7-x^8-x^9)/(1-6*x^6-x^12).
1
0, 1, 1, 2, 2, 5, 5, 3, 8, 11, 11, 30, 30, 19, 49, 68, 68, 185, 185, 117, 302, 419, 419, 1140, 1140, 721, 1861, 2582, 2582, 7025, 7025, 4443, 11468, 15911, 15911, 43290, 43290, 27379, 70669, 98048, 98048, 266765, 266765, 168717, 435482, 604199, 604199, 1643880, 1643880, 1039681
OFFSET
0,4
FORMULA
From R. J. Mathar, Nov 28 2008: (Start)
a(n) = 6*a(n-6) + a(n-12).
G.f.: x*(1+x+2*x^2+2*x^3+5*x^4+5*x^5-3*x^6+2*x^7-x^8-x^9)/(1-6*x^6-x^12).
a(6n+1) = A005667(n). (End)
MATHEMATICA
CoefficientList[Series[x*(1 + x + 2*x^2 + 2*x^3 + 5*x^4 + 5*x^5 - 3*x^6 + 2*x^7 - x^8 - x^9)/(1 - 6*x^6 - x^12), {x, 0, 50}], x] (* G. C. Greubel, Sep 20 2017 *)
PROG
(PARI) x='x+O('x^50); Vec(x*(1 + x + 2*x^2 + 2*x^3 + 5*x^4 + 5*x^5 - 3*x^6 + 2*x^7 - x^8 - x^9)/(1 - 6*x^6 - x^12)) \\ G. C. Greubel, Sep 20 2017
CROSSREFS
Sequence in context: A045537 A243941 A161622 * A210802 A257943 A008280
KEYWORD
nonn,easy,less
AUTHOR
Roger L. Bagula, Mar 17 2006
EXTENSIONS
More terms added by G. C. Greubel, Sep 20 2017
Better name using given g.f. from Joerg Arndt, Oct 26 2024
STATUS
approved