The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A116558 a(n) = 6*a(n-4) - a(n-8). 1
 0, 1, 1, 5, 2, 5, 5, 29, 12, 29, 29, 169, 70, 169, 169, 985, 408, 985, 985, 5741, 2378, 5741, 5741, 33461, 13860, 33461, 33461, 195025, 80782, 195025, 195025, 1136689, 470832, 1136689, 1136689, 6625109, 2744210, 6625109, 6625109, 38613965, 15994428, 38613965 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (0,0,0,6,0,0,0,-1). FORMULA From R. J. Mathar, Nov 28 2008: (Start) a(n) = 6*a(n-4) - a(n-8). G.f.: x*(1+x+5*x^2+2*x^3-x^4-x^5-x^6)/((1-2*x^2-x^4)*(1+2*x^2-x^4)). (End) MATHEMATICA CoefficientList[Series[x (1+x+5x^2+2x^3-x^4-x^5-x^6)/((1-2x^2-x^4) (1+2x^2-x^4)), {x, 0, 50}], x] (* Harvey P. Dale, May 11 2011 *) PROG (PARI) x='x+O('x^50); Vec(x*(1+x+5*x^2+2*x^3-x^4-x^5-x^6)/((1-2*x^2-x^4)*(1+2*x^2-x^4))) \\ G. C. Greubel, Sep 20 2017 CROSSREFS Quadrisections: A001542, A001653. [From R. J. Mathar, Nov 28 2008] Sequence in context: A020855 A007292 A191583 * A196626 A082571 A087300 Adjacent sequences:  A116555 A116556 A116557 * A116559 A116560 A116561 KEYWORD nonn,less,easy AUTHOR Roger L. Bagula, Mar 16 2006 EXTENSIONS Edited, corrected and new name using Mathar's formula, Editors, Sep 21 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 5 09:34 EST 2021. Contains 349543 sequences. (Running on oeis4.)