login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 6*a(n-4) - a(n-8).
1

%I #22 Sep 21 2017 14:15:54

%S 0,1,1,5,2,5,5,29,12,29,29,169,70,169,169,985,408,985,985,5741,2378,

%T 5741,5741,33461,13860,33461,33461,195025,80782,195025,195025,1136689,

%U 470832,1136689,1136689,6625109,2744210,6625109,6625109,38613965,15994428,38613965

%N a(n) = 6*a(n-4) - a(n-8).

%H G. C. Greubel, <a href="/A116558/b116558.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,6,0,0,0,-1).

%F From _R. J. Mathar_, Nov 28 2008: (Start)

%F a(n) = 6*a(n-4) - a(n-8).

%F G.f.: x*(1+x+5*x^2+2*x^3-x^4-x^5-x^6)/((1-2*x^2-x^4)*(1+2*x^2-x^4)). (End)

%t CoefficientList[Series[x (1+x+5x^2+2x^3-x^4-x^5-x^6)/((1-2x^2-x^4) (1+2x^2-x^4)),{x,0,50}],x] (* _Harvey P. Dale_, May 11 2011 *)

%o (PARI) x='x+O('x^50); Vec(x*(1+x+5*x^2+2*x^3-x^4-x^5-x^6)/((1-2*x^2-x^4)*(1+2*x^2-x^4))) \\ _G. C. Greubel_, Sep 20 2017

%Y Quadrisections: A001542, A001653. [From _R. J. Mathar_, Nov 28 2008]

%K nonn,less,easy

%O 0,4

%A _Roger L. Bagula_, Mar 16 2006

%E Edited, corrected and new name using Mathar's formula, Editors, Sep 21 2017