The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A196626 Decimal expansion of the least x>0 satisfying 1=x*cos(5*x). 4
 1, 1, 5, 2, 5, 6, 1, 8, 9, 1, 2, 1, 8, 1, 9, 7, 6, 0, 6, 6, 0, 1, 4, 6, 0, 0, 3, 0, 5, 9, 9, 9, 9, 0, 6, 7, 1, 3, 3, 5, 3, 6, 3, 9, 3, 6, 1, 4, 2, 4, 1, 1, 3, 3, 3, 6, 1, 6, 6, 4, 9, 8, 8, 9, 7, 0, 6, 5, 4, 8, 3, 9, 5, 5, 8, 2, 8, 0, 2, 0, 7, 6, 3, 7, 3, 5, 0, 2, 7, 8, 0, 6, 9, 6, 8, 9, 4, 5, 3, 8 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 LINKS Table of n, a(n) for n=1..100. EXAMPLE x=1.152561891218197606601460030599990... MATHEMATICA Plot[{1/x, Cos[x], Cos[2 x], Cos[3 x], Cos[4 x]}, {x, 0, 2 Pi}] t = x /. FindRoot[1/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100] RealDigits[t] (* A133868 *) t = x /. FindRoot[1/x == Cos[2 x], {x, 2, 3}, WorkingPrecision -> 100] RealDigits[t] (* A196608 *) t = x /. FindRoot[1/x == Cos[3 x], {x, 1, 2}, WorkingPrecision -> 100] RealDigits[t] (* A196602 *) t = x /. FindRoot[1/x == Cos[4 x], {x, .9, 1.4}, WorkingPrecision -> 100] RealDigits[t] (* A196609 *) t = x /. FindRoot[1/x == Cos[5 x], {x, .9, 1.2}, WorkingPrecision -> 100] RealDigits[t] (* A196626 *) CROSSREFS Sequence in context: A007292 A191583 A116558 * A082571 A354195 A087300 Adjacent sequences: A196623 A196624 A196625 * A196627 A196628 A196629 KEYWORD nonn,cons AUTHOR Clark Kimberling, Oct 05 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 21 06:38 EDT 2024. Contains 373540 sequences. (Running on oeis4.)