|
|
A196624
|
|
Decimal expansion of the least x>0 satisfying 1=2x*sin(x).
|
|
6
|
|
|
7, 4, 0, 8, 4, 0, 9, 5, 5, 0, 9, 5, 4, 9, 0, 6, 2, 1, 0, 1, 0, 9, 3, 5, 4, 0, 9, 9, 4, 3, 1, 3, 0, 1, 3, 7, 1, 9, 8, 6, 5, 2, 7, 9, 3, 5, 5, 9, 3, 2, 1, 5, 7, 6, 3, 2, 4, 2, 7, 0, 4, 8, 1, 9, 5, 1, 7, 6, 6, 5, 7, 5, 3, 5, 1, 4, 8, 4, 5, 3, 8, 6, 3, 3, 0, 4, 6, 4, 4, 2, 6, 5, 1, 1, 1, 3, 2, 1, 6, 1
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
LINKS
|
Table of n, a(n) for n=0..99.
|
|
EXAMPLE
|
x=0.7408409550954906210109354099431301371986...
|
|
MATHEMATICA
|
Plot[{1/x, Sin[x], 2 Sin[x], 3*Sin[x], 4 Sin[x]}, {x, 0, 2 Pi}]
t = x /. FindRoot[1/x == Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100]
RealDigits[t] (* A133866 *)
t = x /. FindRoot[1/x == 2 Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100]
RealDigits[t] (* A196624 *)
t = x /. FindRoot[1/x == 3 Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100]
RealDigits[t] (* A196754 *)
t = x /. FindRoot[1/x == 4 Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100]
RealDigits[t] (* A196755 *)
t = x /. FindRoot[1/x == 5 Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100]
RealDigits[t] (* A196756 *)
t = x /. FindRoot[1/x == 6 Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100]
RealDigits[t] (* A196757 *)
|
|
CROSSREFS
|
Cf. A196758
Sequence in context: A021139 A020790 A199955 * A157413 A258500 A243308
Adjacent sequences: A196621 A196622 A196623 * A196625 A196626 A196627
|
|
KEYWORD
|
nonn,cons
|
|
AUTHOR
|
Clark Kimberling, Oct 06 2011
|
|
STATUS
|
approved
|
|
|
|