login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A196624
Decimal expansion of the least x>0 satisfying 1=2x*sin(x).
6
7, 4, 0, 8, 4, 0, 9, 5, 5, 0, 9, 5, 4, 9, 0, 6, 2, 1, 0, 1, 0, 9, 3, 5, 4, 0, 9, 9, 4, 3, 1, 3, 0, 1, 3, 7, 1, 9, 8, 6, 5, 2, 7, 9, 3, 5, 5, 9, 3, 2, 1, 5, 7, 6, 3, 2, 4, 2, 7, 0, 4, 8, 1, 9, 5, 1, 7, 6, 6, 5, 7, 5, 3, 5, 1, 4, 8, 4, 5, 3, 8, 6, 3, 3, 0, 4, 6, 4, 4, 2, 6, 5, 1, 1, 1, 3, 2, 1, 6, 1
OFFSET
0,1
EXAMPLE
x=0.7408409550954906210109354099431301371986...
MATHEMATICA
Plot[{1/x, Sin[x], 2 Sin[x], 3*Sin[x], 4 Sin[x]}, {x, 0, 2 Pi}]
t = x /. FindRoot[1/x == Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100]
RealDigits[t] (* A133866 *)
t = x /. FindRoot[1/x == 2 Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100]
RealDigits[t] (* A196624 *)
t = x /. FindRoot[1/x == 3 Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100]
RealDigits[t] (* A196754 *)
t = x /. FindRoot[1/x == 4 Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100]
RealDigits[t] (* A196755 *)
t = x /. FindRoot[1/x == 5 Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100]
RealDigits[t] (* A196756 *)
t = x /. FindRoot[1/x == 6 Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100]
RealDigits[t] (* A196757 *)
CROSSREFS
Sequence in context: A021139 A020790 A199955 * A157413 A258500 A243308
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 06 2011
STATUS
approved