login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A196624 Decimal expansion of the least x>0 satisfying 1=2x*sin(x). 6
7, 4, 0, 8, 4, 0, 9, 5, 5, 0, 9, 5, 4, 9, 0, 6, 2, 1, 0, 1, 0, 9, 3, 5, 4, 0, 9, 9, 4, 3, 1, 3, 0, 1, 3, 7, 1, 9, 8, 6, 5, 2, 7, 9, 3, 5, 5, 9, 3, 2, 1, 5, 7, 6, 3, 2, 4, 2, 7, 0, 4, 8, 1, 9, 5, 1, 7, 6, 6, 5, 7, 5, 3, 5, 1, 4, 8, 4, 5, 3, 8, 6, 3, 3, 0, 4, 6, 4, 4, 2, 6, 5, 1, 1, 1, 3, 2, 1, 6, 1 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

LINKS

Table of n, a(n) for n=0..99.

EXAMPLE

x=0.7408409550954906210109354099431301371986...

MATHEMATICA

Plot[{1/x, Sin[x], 2 Sin[x], 3*Sin[x], 4 Sin[x]}, {x, 0, 2 Pi}]

t = x /. FindRoot[1/x == Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100]

RealDigits[t] (* A133866 *)

t = x /. FindRoot[1/x == 2 Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100]

RealDigits[t] (* A196624 *)

t = x /. FindRoot[1/x == 3 Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100]

RealDigits[t] (* A196754 *)

t = x /. FindRoot[1/x == 4 Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100]

RealDigits[t] (* A196755 *)

t = x /. FindRoot[1/x == 5 Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100]

RealDigits[t] (* A196756 *)

t = x /. FindRoot[1/x == 6 Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100]

RealDigits[t] (* A196757 *)

CROSSREFS

Cf. A196758

Sequence in context: A021139 A020790 A199955 * A157413 A258500 A243308

Adjacent sequences: A196621 A196622 A196623 * A196625 A196626 A196627

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Oct 06 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 20 06:24 EDT 2023. Contains 361359 sequences. (Running on oeis4.)