login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A196755 Decimal expansion of the least x>0 satisfying 1=4x*sin(x). 5
5, 1, 1, 1, 0, 2, 2, 4, 0, 2, 6, 7, 9, 0, 3, 2, 8, 1, 1, 9, 7, 6, 3, 5, 0, 8, 6, 9, 8, 9, 5, 4, 5, 9, 4, 7, 7, 0, 9, 7, 3, 4, 2, 5, 7, 3, 8, 5, 6, 6, 8, 5, 0, 9, 8, 6, 8, 8, 4, 8, 0, 4, 0, 8, 8, 8, 8, 0, 7, 0, 5, 5, 0, 0, 0, 4, 5, 7, 7, 2, 2, 0, 7, 0, 0, 6, 0, 9, 2, 5, 4, 9, 8, 1, 4, 2, 7, 5, 5, 0 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

LINKS

Table of n, a(n) for n=0..99.

EXAMPLE

x=0.51110224026790328119763508698954594770973...

MATHEMATICA

Plot[{1/x, Sin[x], 2 Sin[x], 3*Sin[x], 4 Sin[x]}, {x, 0, 2 Pi}]

t = x /. FindRoot[1/x == Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100]

RealDigits[t]  (* A133866 *)

t = x /. FindRoot[1/x == 2 Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100]

RealDigits[t]  (* A196624 *)

t = x /. FindRoot[1/x == 3 Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100]

RealDigits[t]  (* A196754 *)

t = x /. FindRoot[1/x == 4 Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100]

RealDigits[t]  (* A196755 *)

t = x /. FindRoot[1/x == 5 Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100]

RealDigits[t]  (* A196756 *)

t = x /. FindRoot[1/x == 6 Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100]

RealDigits[t]  (* A196757 *)

CROSSREFS

Cf. A196758.

Sequence in context: A281446 A196840 A162298 * A199510 A146306 A336697

Adjacent sequences:  A196752 A196753 A196754 * A196756 A196757 A196758

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Oct 06 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 24 06:56 EDT 2021. Contains 346273 sequences. (Running on oeis4.)