login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A162298
Faulhaber's triangle: triangle T(k,y) read by rows, giving numerator of the coefficient [m^y] of the polynomial Sum_{x=1..m} x^(k-1).
7
1, 1, 1, 1, 1, 1, 0, 1, 1, 1, -1, 0, 1, 1, 1, 0, -1, 0, 5, 1, 1, 1, 0, -1, 0, 1, 1, 1, 0, 1, 0, -7, 0, 7, 1, 1, -1, 0, 2, 0, -7, 0, 2, 1, 1, 0, -3, 0, 1, 0, -7, 0, 3, 1, 1, 5, 0, -1, 0, 1, 0, -1, 0, 5, 1, 1, 0, 5, 0, -11, 0, 11, 0, -11, 0, 11, 1, 1, -691, 0, 5, 0, -33, 0, 22, 0, -11, 0, 1, 1, 1, 0, -691, 0, 65, 0, -143, 0, 143, 0, -143, 0, 13, 1, 1
OFFSET
0,19
COMMENTS
There are many versions of Faulhaber's triangle: search the OEIS for his name. For example, A220962/A220963 is essentially the same as this triangle, except for an initial column of 0's. - N. J. A. Sloane, Jan 28 2017
Named after the German mathematician Johann Faulhaber (1580-1653). - Amiram Eldar, Jun 13 2021
LINKS
Mohammad Torabi-Dashti, Faulhaber's Triangle, College Math. J., Vol. 42, No. 2 (2011), pp. 96-97.
Mohammad Torabi-Dashti, Faulhaber’s Triangle. [Annotated scanned copy of preprint]
Eric Weisstein's MathWorld, Power Sum.
FORMULA
Faulhaber's triangle of fractions H(n,k) (n >= 0, 1 <= k <= n+1) is defined by: H(0,1)=1; for 2<=k<=n+1, H(n,k) = (n/k)*H(n-1,k-1) with H(n,1) = 1 - Sum_{i=2..n+1}H(n,i). - N. J. A. Sloane, Jan 28 2017
Sum_{x=1..m} x^(k-1) = (Bernoulli(k,m+1)-Bernoulli(k))/k.
EXAMPLE
The first few polynomials:
m;
m/2 + m^2/2;
m/6 + m^2/2 + m^3/3;
0 + m^2/4 + m^3/2 + m^4/4;
-m/30 + 0 + m^3/3 + m^4/2 + m^5/5;
...
Initial rows of Faulhaber's triangle of fractions H(n, k) (n >= 0, 1 <= k <= n+1):
1;
1/2, 1/2;
1/6, 1/2, 1/3;
0, 1/4, 1/2, 1/4;
-1/30, 0, 1/3, 1/2, 1/5;
0, -1/12, 0, 5/12, 1/2, 1/6;
1/42, 0, -1/6, 0, 1/2, 1/2, 1/7;
0, 1/12, 0, -7/24, 0, 7/12, 1/2, 1/8;
-1/30, 0, 2/9, 0, -7/15, 0, 2/3, 1/2, 1/9;
...
MAPLE
A162298 := proc(k, y) local gf, x; gf := sum(x^(k-1), x=1..m) ; coeftayl(gf, m=0, y) ; numer(%) ; end proc: # R. J. Mathar, Mar 26 2013
# To produce Faulhaber's triangle of fractions H(n, k) (n >= 0, 1 <= k <= n+1):
H:=proc(n, k) option remember; local i;
if n<0 or k>n+1 then 0;
elif n=0 then 1;
elif k>1 then (n/k)*H(n-1, k-1);
else 1 - add(H(n, i), i=2..n+1); fi; end;
for n from 0 to 10 do lprint([seq(H(n, k), k=1..n+1)]); od:
for n from 0 to 12 do lprint([seq(numer(H(n, k)), k=1..n+1)]); od: # A162298
for n from 0 to 12 do lprint([seq(denom(H(n, k)), k=1..n+1)]); od: # A162299 # N. J. A. Sloane, Jan 28 2017
MATHEMATICA
H[n_, k_] := H[n, k] = Which[n < 0 || k > n+1, 0, n == 0, 1, k > 1, (n/k)* H[n-1, k-1], True, 1 - Sum[H[n, i], {i, 2, n+1}]];
Table[H[n, k] // Numerator, {n, 0, 13}, {k, 1, n+1}] // Flatten (* Jean-François Alcover, Aug 04 2022 *)
CROSSREFS
Cf. A000367, A162299 (denominators).
See also A220962/A220963.
Sequence in context: A227577 A281446 A196840 * A196755 A199510 A146306
KEYWORD
tabl,frac,sign
AUTHOR
Juri-Stepan Gerasimov, Jun 30 2009 and Jul 02 2009
EXTENSIONS
Offset set to 0 by Alois P. Heinz, Feb 19 2021
STATUS
approved