The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A162298 Faulhaber's triangle: triangle T(k,y) read by rows, giving numerator of the coefficient [m^y] of the polynomial Sum_{x=1..m} x^(k-1). 7
 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, -1, 0, 1, 1, 1, 0, -1, 0, 5, 1, 1, 1, 0, -1, 0, 1, 1, 1, 0, 1, 0, -7, 0, 7, 1, 1, -1, 0, 2, 0, -7, 0, 2, 1, 1, 0, -3, 0, 1, 0, -7, 0, 3, 1, 1, 5, 0, -1, 0, 1, 0, -1, 0, 5, 1, 1, 0, 5, 0, -11, 0, 11, 0, -11, 0, 11, 1, 1, -691, 0, 5, 0, -33, 0, 22, 0, -11, 0, 1, 1, 1, 0, -691, 0, 65, 0, -143, 0, 143, 0, -143, 0, 13, 1, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,19 COMMENTS There are many versions of Faulhaber's triangle: search the OEIS for his name. For example, A220962/A220963 is essentially the same as this triangle, except for an initial column of 0's. - N. J. A. Sloane, Jan 28 2017 Named after the German mathematician Johann Faulhaber (1580-1653). - Amiram Eldar, Jun 13 2021 LINKS Alois P. Heinz, Rows n = 0..140, flattened Mohammad Torabi-Dashti, Faulhaber's Triangle, College Math. J., Vol. 42, No. 2 (2011), pp. 96-97. Mohammad Torabi-Dashti, Faulhaber’s Triangle. [Annotated scanned copy of preprint] Eric Weisstein's MathWorld, Power Sum. FORMULA Faulhaber's triangle of fractions H(n,k) (n >= 0, 1 <= k <= n+1) is defined by: H(0,1)=1; for 2<=k<=n+1, H(n,k) = (n/k)*H(n-1,k-1) with H(n,1) =  1 - Sum_{i=2..n+1}H(n,i). - N. J. A. Sloane, Jan 28 2017 Sum_{x=1..m} x^(k-1) = (Bernoulli(k,m+1)-Bernoulli(k))/k. EXAMPLE The first few polynomials:     m;    m/2  + m^2/2;    m/6  + m^2/2 + m^3/3;     0   + m^2/4 + m^3/2 + m^4/4;   -m/30 +   0   + m^3/3 + m^4/2 + m^5/5;   ... Initial rows of Faulhaber's triangle of fractions H(n, k) (n >= 0, 1 <= k <= n+1):     1;    1/2,  1/2;    1/6,  1/2,  1/3;     0,   1/4,  1/2,  1/4;   -1/30,  0,   1/3,  1/2,  1/5;     0,  -1/12,  0,   5/12, 1/2,  1/6;    1/42,  0,  -1/6,   0,   1/2,  1/2,  1/7;     0,   1/12,  0,  -7/24,  0,   7/12, 1/2,  1/8;   -1/30,  0,   2/9,   0,  -7/15,  0,   2/3,  1/2,  1/9;   ... MAPLE A162298 := proc(k, y) local gf, x; gf := sum(x^(k-1), x=1..m) ; coeftayl(gf, m=0, y) ; numer(%) ; end proc: # R. J. Mathar, Mar 26 2013 # To produce Faulhaber's triangle of fractions H(n, k) (n >= 0, 1 <= k <= n+1): H:=proc(n, k) option remember; local i; if n<0 or k>n+1 then 0; elif n=0 then 1; elif k>1 then (n/k)*H(n-1, k-1); else 1 - add(H(n, i), i=2..n+1); fi; end; for n from 0 to 10 do lprint([seq(H(n, k), k=1..n+1)]); od: for n from 0 to 12 do lprint([seq(numer(H(n, k)), k=1..n+1)]); od: # A162298 for n from 0 to 12 do lprint([seq(denom(H(n, k)), k=1..n+1)]); od: # A162299 # N. J. A. Sloane, Jan 28 2017 CROSSREFS Cf. A000367, A162299 (denominators). See also A220962/A220963. Sequence in context: A227577 A281446 A196840 * A196755 A199510 A146306 Adjacent sequences:  A162295 A162296 A162297 * A162299 A162300 A162301 KEYWORD tabl,frac,sign,changed AUTHOR Juri-Stepan Gerasimov, Jun 30 2009 and Jul 02 2009 EXTENSIONS Offset set to 0 by Alois P. Heinz, Feb 19 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 16 19:05 EDT 2021. Contains 345068 sequences. (Running on oeis4.)