|
|
A162297
|
|
Number of reduced words of length n in the Weyl group D_12.
|
|
32
|
|
|
1, 12, 77, 352, 1286, 3992, 10933, 27092, 61841, 131768, 264759, 505660, 923857, 1623104, 2753895, 4528612, 7239585, 11280072, 17168009, 25572196, 37340381, 53528488, 75430016, 104604424, 142903123, 192491532, 255865533, 335860592
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
REFERENCES
|
N. Bourbaki, Groupes et Algèbres de Lie, Chap. 4, 5 and 6, Hermann, Paris, 1968. See Chap. VI, Section 4, Problem 10a, page 231, W(t).
J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.
|
|
LINKS
|
Table of n, a(n) for n=0..27.
Index entries for growth series for groups
|
|
FORMULA
|
The growth series for D_k is the polynomial f(k)*Prod_{i=1..k-1} f(2*i), where f(m) = (1-x^m)/(1-x) [Corrected by N. J. A. Sloane, Aug 07 2021]. This is a row of the triangle in A162206.
|
|
MAPLE
|
# Growth series for D_k, truncated to terms of order M. - N. J. A. Sloane, Aug 07 2021
f := proc(m::integer) (1-x^m)/(1-x) ; end proc:
g := proc(k, M) local a, i; global f;
a:=f(k)*mul(f(2*i), i=1..k-1);
seriestolist(series(a, x, M+1));
end proc;
|
|
MATHEMATICA
|
n = 12;
x = y + y O[y]^(n^2);
(1-x^n) Product[1-x^(2k), {k, 1, n-1}]/(1-x)^n // CoefficientList[#, y]& (* Jean-François Alcover, Mar 25 2020, from A162206 *)
|
|
CROSSREFS
|
The growth series for D_k, k >= 3, are also the rows of the triangle A162206.
Growth series for groups D_n, n = 3,...,32: A161435, A162207, A162208, A162209, A162210, A162211, A162212, A162248, A162288, A162297, A162300, A162301, A162321, A162327, A162328, A162346, A162347, A162359, A162360, A162364, A162365, A162366, A162367, A162368, A162369, A162370, A162376, A162377, A162378, A162379; also A162206
Sequence in context: A335253 A071767 A161461 * A161858 A054334 A267174
Adjacent sequences: A162294 A162295 A162296 * A162298 A162299 A162300
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
John Cannon and N. J. A. Sloane, Dec 01 2009
|
|
EXTENSIONS
|
Entry revised by N. J. A. Sloane, Jan 17 2016
|
|
STATUS
|
approved
|
|
|
|