login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A162297 Number of reduced words of length n in the Weyl group D_12. 32
1, 12, 77, 352, 1286, 3992, 10933, 27092, 61841, 131768, 264759, 505660, 923857, 1623104, 2753895, 4528612, 7239585, 11280072, 17168009, 25572196, 37340381, 53528488, 75430016, 104604424, 142903123, 192491532, 255865533, 335860592 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

REFERENCES

N. Bourbaki, Groupes et Algèbres de Lie, Chap. 4, 5 and 6, Hermann, Paris, 1968. See Chap. VI, Section 4, Problem 10a, page 231, W(t).

J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.

LINKS

Table of n, a(n) for n=0..27.

Index entries for growth series for groups

FORMULA

The growth series for D_k is the polynomial f(k)*Prod_{i=1..k-1} f(2*i), where f(m) = (1-x^m)/(1-x) [Corrected by N. J. A. Sloane, Aug 07 2021]. This is a row of the triangle in A162206.

MAPLE

# Growth series for D_k, truncated to terms of order M. - N. J. A. Sloane, Aug 07 2021

f := proc(m::integer) (1-x^m)/(1-x) ; end proc:

g := proc(k, M) local a, i; global f;

a:=f(k)*mul(f(2*i), i=1..k-1);

seriestolist(series(a, x, M+1));

end proc;

MATHEMATICA

n = 12;

x = y + y O[y]^(n^2);

(1-x^n) Product[1-x^(2k), {k, 1, n-1}]/(1-x)^n // CoefficientList[#, y]& (* Jean-François Alcover, Mar 25 2020, from A162206 *)

CROSSREFS

The growth series for D_k, k >= 3, are also the rows of the triangle A162206.

Growth series for groups D_n, n = 3,...,32: A161435, A162207, A162208, A162209, A162210, A162211, A162212, A162248, A162288, A162297, A162300, A162301, A162321, A162327, A162328, A162346, A162347, A162359, A162360, A162364, A162365, A162366, A162367, A162368, A162369, A162370, A162376, A162377, A162378, A162379; also A162206

Sequence in context: A335253 A071767 A161461 * A161858 A054334 A267174

Adjacent sequences:  A162294 A162295 A162296 * A162298 A162299 A162300

KEYWORD

nonn

AUTHOR

John Cannon and N. J. A. Sloane, Dec 01 2009

EXTENSIONS

Entry revised by N. J. A. Sloane, Jan 17 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 18 02:34 EDT 2022. Contains 356204 sequences. (Running on oeis4.)