OFFSET
0,19
COMMENTS
Duplicate of A162298. - Joerg Arndt, May 27 2019
The sums of the k-th power of each of the first n positive integers, sum(j^k,j=1..n), k>=0, n>=1, abbreviated usually as Sigma n^k, can be written as Sigma n^k = sum(r(k,m)*n^m,m=1..k+1), with the rational number triangle r(n,m)=a(n,m)/A162299(k+1,m). See, e.g., the Graham et al. reference, eq. (6.78), p. 269, where Sigma n^k is S_k(n+1) - delta(k,0), with delta(k,0)=1 if k=0 and 0 else. The formula for r(n,m) given below can be adapted from this reference, and it is found in the given form (for k>0) in the Remmert reference, p. 175.
For sums of powers of integers see the array A103438 with further references and links.
REFERENCES
R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1991 (Seventh printing).Second ed. 1994.
R. Remmert, Funktionentheorie I, Zweite Auflage, Springer-Verlag, 1989. English version: Classical topics in complex function theory, Springer, 1998.
FORMULA
EXAMPLE
The triangle a(k,m) starts with
k\m 1 2 3 4 5 6 7 8 9 10 11 ...
0: 1
1: 1 1
2: 1 1 1
3: 0 1 1 1
4: -1 0 1 1 1
5: 0 -1 0 5 1 1
6: 1 0 -1 0 1 1 1
7: 0 1 0 -7 0 7 1 1
8: -1 0 2 0 -7 0 2 1 1
9: 0 -3 0 1 0 -7 0 3 1 1
10: 5 0 -1 0 1 0 -1 0 5 1 1
...
The rational number triangle a(k,m)/A162299(k+1,m) starts with
k\m 1 2 3 4 5 6 7 8 9 ...
0: 1
1: 1/2 1/2
2: 1/6 1/2 1/3
3: 0 1/4 1/2 1/4
4: -1/30 0 1/3 1/2 1/5
5: 0 -1/12 0 5/12 1/2 1/6
6: 1/42 0 -1/6 0 1/2 1/2 1/7
7: 0 1/12 0 -7/24 0 7/12 1/2 1/8
8: -1/30 0 2/9 0 -7/15 0 2/3 1/2 1/9
...
Sigma n^4 = sum(j^4,j=1..n) =
-(1/30)*n + (1/3)*n^3 + (1/2)*n^4 + (1/5)*n^5.
For n>=1 this is the sequence A000538(n).
MATHEMATICA
row[k_] := Numerator[ Rest[ CoefficientList[ HarmonicNumber[n, -k], n]]]; Flatten[ Table[ row[k], {k, 0, 10}]] (* Jean-François Alcover, Dec 07 2011 *)
CROSSREFS
KEYWORD
AUTHOR
Wolfdieter Lang, Oct 23 2011
STATUS
approved