The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A196840 Numerators of coefficients of the polynomials in n of the sums of powers of the first n positive integers. 0
 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, -1, 0, 1, 1, 1, 0, -1, 0, 5, 1, 1, 1, 0, -1, 0, 1, 1, 1, 0, 1, 0, -7, 0, 7, 1, 1, -1, 0, 2, 0, -7, 0, 2, 1, 1, 0, -3, 0, 1, 0, -7, 0, 3, 1, 1, 5, 0, -1, 0, 1, 0, -1, 0, 5, 1, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,19 COMMENTS Duplicate of A162298. - Joerg Arndt, May 27 2019 The sums of the k-th power of each of the first n positive integers, sum(j^k,j=1..n), k>=0, n>=1, abbreviated usually as Sigma n^k, can be written as Sigma n^k = sum(r(k,m)*n^m,m=1..k+1), with the rational number triangle r(n,m)=a(n,m)/A162299(k+1,m). See, e.g., the Graham et al. reference, eq. (6.78), p. 269, where Sigma n^k is S_k(n+1) - delta(k,0), with delta(k,0)=1 if k=0 and 0 else. The formula for r(n,m) given below can be adapted from this reference, and it is found in the given form (for k>0) in the Remmert reference, p. 175. For sums of powers of integers see the array A103438 with further references and links. REFERENCES R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1991 (Seventh printing).Second ed. 1994. R. Remmert, Funktionentheorie I, Zweite Auflage, Springer-Verlag, 1989. English version: Classical topics in complex function theory, Springer, 1998. LINKS FORMULA a(k,m)= numerator(r(k,m)) with r(k,m)= 1/(k+1) if m=k+1, 1/2 if m=k, and (B(k+1-m)/(k+1-m))*binomial(k,m) if m = 1,...,k-1, with the Bernoulli numbers B(n)=A027641(n)/A027642(n). Another version, involving Stirling numbers is r(k,m) = ((-1)^(k+1-m))*sum(S(k,l)*s(l+1,m)/(l+1),l=(m-1),...,k), k>=0, m=1,...,k+1, with the Stirling numbers of the second kind S, given in A048993, and of the first kind s, given in A048994. For this formula see the W. Lang link under A196837, addendum. EXAMPLE The triangle a(k,m) starts with k\m  1   2  3  4  5  6  7  8  9 10 11 ... 0:   1 1:   1   1 2:   1   1  1 3:   0   1  1  1 4:  -1   0  1  1  1 5:   0  -1  0  5  1  1 6:   1   0 -1  0  1  1  1 7:   0   1  0 -7  0  7  1  1 8:  -1   0  2  0 -7  0  2  1  1 9:   0  -3  0  1  0 -7  0  3  1  1 10:  5   0 -1  0  1  0 -1  0  5  1  1 ... The rational number triangle a(k,m)/A162299(k+1,m) starts with k\m  1     2     3     4     5      6    7    8    9 ... 0:   1 1:  1/2   1/2 2:  1/6   1/2   1/3 3:   0    1/4   1/2   1/4 4: -1/30   0    1/3   1/2   1/5 5:   0   -1/12   0   5/12   1/2    1/6 6:  1/42   0   -1/6    0    1/2    1/2  1/7 7:   0    1/12   0   -7/24   0    7/12  1/2  1/8 8: -1/30   0    2/9    0   -7/15    0   2/3  1/2  1/9 ... Sigma n^4 = sum(j^4,j=1..n) = -(1/30)*n + (1/3)*n^3 +  (1/2)*n^4 + (1/5)*n^5. For n>=1 this is the sequence A000538(n). MATHEMATICA row[k_] := Numerator[ Rest[ CoefficientList[ HarmonicNumber[n, -k], n]]]; Flatten[ Table[ row[k], {k, 0, 10}]] (* Jean-François Alcover, Dec 07 2011 *) CROSSREFS Sequence in context: A086464 A227577 A281446 * A162298 A196755 A199510 Adjacent sequences:  A196837 A196838 A196839 * A196841 A196842 A196843 KEYWORD sign,easy,tabl AUTHOR Wolfdieter Lang, Oct 23 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 10 20:17 EDT 2021. Contains 342856 sequences. (Running on oeis4.)