|
|
A000538
|
|
Sum of fourth powers: 0^4 + 1^4 + ... + n^4.
(Formerly M5043 N2179)
|
|
80
|
|
|
0, 1, 17, 98, 354, 979, 2275, 4676, 8772, 15333, 25333, 39974, 60710, 89271, 127687, 178312, 243848, 327369, 432345, 562666, 722666, 917147, 1151403, 1431244, 1763020, 2153645, 2610621, 3142062, 3756718, 4463999, 5273999, 6197520, 7246096, 8432017, 9768353
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
A formula for the r-th successive summation of k^4, for k = 1 to n, is ((12*n^2+(12*n-5)*r+r^2)*(2*n+r)*(n+r)!)/((r+4)!*(n-1)!), (H. W. Gould). - Gary Detlefs, Jan 02 2014
The number of four dimensional hypercubes in a 4D grid with side lengths n. This applies in general to k dimensions. That is, the number of k-dimensional hypercubes in a k-dimensional grid with side lengths n is equal to the sum of 1^k + 2^k + ... + n^k. - Alejandro Rodriguez, Oct 20 2020
|
|
REFERENCES
|
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 813.
A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 222.
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 155.
R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1991, p. 275.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
B. Berselli, A description of the transform in Comments lines: website Matem@ticamente (in Italian).
|
|
FORMULA
|
a(n) = n*(1+n)*(1+2*n)*(-1+3*n+3*n^2)/30.
G.f.: x*(1+11*x+11*x^2+x^3)/(1-x)^6. More generally, the o.g.f. for Sum_{k=0..n} k^m is x*E(m, x)/(1-x)^(m+2), where E(m, x) is the Eulerian polynomial of degree m (cf. A008292). The e.g.f. for these o.g.f.s is: x/(1-x)^2*(exp(y/(1-x))-exp(x*y/(1-x)))/(exp(x*y/(1-x))-x*exp(y/(1-x))). - Vladeta Jovovic, May 08 2002
a(n) = 5*a(n-1) - 10* a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) + 24. - Ant King, Sep 23 2013
a(n) = -Sum_{j=1..4} j*s(n+1,n+1-j)*S(n+4-j,n), where s(n,k) and S(n,k) are the Stirling numbers of the first kind and the second kind, respectively. - Mircea Merca, Jan 25 2014
Sum_{n>=1} (-1)^(n+1)/a(n) = -30*(4 + 3/cos(sqrt(7/3)*Pi/2))*Pi/7. - Vaclav Kotesovec, Feb 13 2015
a(n) = (n + 1)*(n + 1/2)*n*(n + 1/2 + sqrt(7/12))*(n + 1/2 - sqrt(7/12))/5, see the Graham et al. reference, p. 275. - Wolfdieter Lang, Apr 02 2015
|
|
MAPLE
|
A000538 := n-> n*(n+1)*(2*n+1)*(3*n^2+3*n-1)/30;
A000538:=(1+z)*(z**2+10*z+1)/(z-1)**6; # Simon Plouffe in his 1992 dissertation; gives sequence without initial zero
|
|
MATHEMATICA
|
CoefficientList[Series[x (1 + 11 x + 11 x^2 + x^3)/(1 - x)^6, {x, 0, 40}], x] (* Vincenzo Librandi, Dec 07 2015 *)
LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 1, 17, 98, 354, 979}, 35] (* Jean-François Alcover, Feb 09 2016 *)
Table[x^5/5+x^4/2+x^3/3-x/30, {x, 40}] (* Harvey P. Dale, Jun 06 2021 *)
|
|
PROG
|
(Sage) [bernoulli_polynomial(n, 5)/5 for n in range(1, 35)] # Zerinvary Lajos, May 17 2009
(Haskell)
a000538 n = (3 * n * (n + 1) - 1) * (2 * n + 1) * (n + 1) * n `div` 30
(Maxima) A000538(n):=n*(n+1)*(2*n+1)*(3*n^2+3*n-1)/30$
(Python)
A000538_list, m = [0], [24, -36, 14, -1, 0, 0]
for _ in range(10**2):
for i in range(5):
m[i+1] += m[i]
(Magma) [n*(1+n)*(1+2*n)*(-1+3*n+3*n^2)/30: n in [0..35]]; // Vincenzo Librandi, Apr 04 2015
(PARI) concat(0, Vec(x*(1+11*x+11*x^2+x^3)/(1-x)^6 + O(x^100))) \\ Altug Alkan, Dec 07 2015
|
|
CROSSREFS
|
Cf. A000217, A000330, A000537, A000539, A000540, A000541, A000542, A007487, A023002, A064538, A101089.
|
|
KEYWORD
|
nonn,easy,nice
|
|
AUTHOR
|
|
|
EXTENSIONS
|
The general V. Jovovic formula has been slightly changed after his approval by Wolfdieter Lang, Nov 03 2011
|
|
STATUS
|
approved
|
|
|
|