login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A254640 Third partial sums of sixth powers (A001014). 23
1, 67, 927, 6677, 32942, 126378, 404634, 1129854, 2833479, 6515509, 13947505, 28115451, 53846156, 98669156, 173975076, 296541132, 490504893, 789878583, 1241708083, 1909993393, 2880500634, 4266609710, 6216356510, 8920844010, 12624212835, 17635378761 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

This is one of a sequence of arrays that are the convolutions of the zero-padded sequences binomial(2n-1+k,k) with the Eulerian polynomials E(n,x) 0f A008292, represented by E(n,x) (1-x)^(-2n), which generate increasing partial sums of powers of integers:

n= 2) (1 + 4*x + x^2)/(1-x)^4 is the o.g.f. of A000578, the convolution of (1,4,1) with A000292, giving the powers of m^3.

n= 3) (1 + 11*x + 11*x^2 + x^3)/(1-x)^6 is the o.g.f. of A000538, convolution of (1,11,11,1) with A000389, giving the partial sums of m^4.

n= 4) (1 + 26*x + 66*x^2 + 26*x^3 + x^4)/(1-x)^8, the o.g.f. of A101092, convolution of (1,26,66,26,1) with A000580, the second partial sums of m^5

n= 5) (1 + 57*x + 302*x^2 + 302*x^3 + 57*x^4 + x^5)/(1-x)^10, the o.g.f. of A254460, convolution of (1,57,302,302,57,1) with A000582, giving the third partial sums of m^6. - Tom Copeland, Dec 07 2015

LINKS

Colin Barker, Table of n, a(n) for n = 1..1000

Luciano Ancora, Partial sums of m-th powers with Faulhaber polynomials

Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).

FORMULA

a(n) = n*(1+n)*(2+n)*(3+n)*(3+2*n)*(2 -30*n +35*n^2 +30*n^3 +5*n^4)/5040.

G.f.: x*(1+x)*(1 +56*x +246*x^2 +56*x^3 +x^4)/(1-x)^10. - Colin Barker, Feb 04 2015

MAPLE

seq(binomial(n+3, 4)*(2*n+3)*(5*n^4 +30*n^3 +35*n^2 -30*n +2)/210, n=1..30); # G. C. Greubel, Aug 28 2019

MATHEMATICA

Table[n(1+n)(2+n)(3+n)(3+2n)(2 -30n +35n^2 +30n^3 +5n^4)/5040, {n, 30}] (* or *) CoefficientList[Series[(x+1)(x^4 +56x^3 +246x^2 +56x +1)/(x - 1)^10, {x, 0, 30}], x] (* Vincenzo Librandi, Feb 05 2015 *)

PROG

(PARI) vector(30, n, n*(1+n)*(2+n)*(3+n)*(3+2*n)*(2-30*n+35*n^2+30*n^3+5*n^4)/5040) \\ Colin Barker, Feb 04 2015

(MAGMA) [n*(1+n)*(2+n)*(3+n)*(3+2*n)*(2-30*n+35*n^2+30*n^3+ 5*n^4)/5040: n in [1..30]]; // Vincenzo Librandi, Feb 05 2015

(Sage) [binomial(n+3, 4)*(2*n+3)*(5*n^4 +30*n^3 +35*n^2 -30*n +2)/210 for n in (1..30)] # G. C. Greubel, Aug 28 2019

(GAP) List([1..30], n-> Binomial(n+3, 4)*(2*n+3)*(5*n^4 +30*n^3 +35*n^2 -30*n +2)/210); # G. C. Greubel, Aug 28 2019

CROSSREFS

Cf. A008292, A000578, A000292, A000538, A000389, A101092, A000580, A254460, A000582.

Sequence in context: A093942 A166802 A212557 * A093267 A032651 A322880

Adjacent sequences:  A254637 A254638 A254639 * A254641 A254642 A254643

KEYWORD

nonn,easy

AUTHOR

Luciano Ancora, Feb 04 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 4 15:33 EDT 2020. Contains 336201 sequences. (Running on oeis4.)