login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A254643
Third partial sums of ninth powers (A001017).
3
1, 515, 21225, 324275, 2862790, 17714466, 85232910, 339635850, 1168343775, 3571356685, 9906622271, 25333920885, 60457751900, 135939162100, 290221510860, 592024274916, 1159935330765, 2192313968775, 4011847886725, 7130537084615
OFFSET
1,2
FORMULA
G.f.: x*(1 +502*x +14608*x^2 +88234*x^3 +156190*x^4 +88234*x^5 +14608*x^6 +502*x^7 +x^8)/(1-x)^13.
a(n) = n*(1+n)*(2+n)*(3+n)*(-50 +84*n +127*n^2 -204*n^3 -97*n^4 +126*n^5 +98*n^6 +24*n^7 +2*n^8)/2640.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + n^9.
EXAMPLE
First differences: 1, 511, 19171, 242461, 1690981, ... (A022525)
------------------------------------------------------------------------
The ninth powers: 1, 512, 19683, 262144, 1953125, ... (A001017)
------------------------------------------------------------------------
First partial sums: 1, 513, 20196, 282340, 2235465, ... (A007487)
Second partial sums: 1, 514, 20710, 303050, 2538515, ... (A253637)
Third partial sums: 1, 515, 21225, 324275, 2862790, ... (this sequence)
MAPLE
seq(binomial(n+3, 4)*(2*n^8 +24*n^7 +98*n^6 +126*n^5 -97*n^4 -203*n^3 +127*n^2 +84*n -50)/110, n=1..30); # G. C. Greubel, Aug 28 2019
MATHEMATICA
Table[n(1+n)(2+n)(3+n)(-50 +84n +127n^2 -204n^3 -97n^4 +126n^5 +98n^6 +24n^7 +2n^8)/2640, {n, 20}] (* or *)
CoefficientList[Series[(1 +502x +14608x^2 +88234x^3 +156190x^4 +88234x^5 +14608x^6 +502x^7 +x^8)/(1-x)^13, {x, 0, 19}], x] (* Ancora *)
Accumulate[Accumulate[Accumulate[Range[10]^9]]] (* Alonso del Arte, Feb 09 2015 *)
PROG
(PARI) vector(30, n, m=n+3; binomial(m, 4)*(2*(n*m)^4 -10*(n*m)^3 +11*(n*m)^2 +28*(n*m) -50)/110) \\ G. C. Greubel, Aug 28 2019
(Magma) [Binomial(n+3, 4)*(2*n^8 +24*n^7 +98*n^6 +126*n^5 -97*n^4 -203*n^3 +127*n^2 +84*n -50)/110: n in [1..30]]; // G. C. Greubel, Aug 28 2019
(Sage) [binomial(n+3, 4)*(2*n^8 +24*n^7 +98*n^6 +126*n^5 -97*n^4 -203*n^3 +127*n^2 +84*n -50)/110 for n in (1..30)] # G. C. Greubel, Aug 28 2019
(GAP) List([1..30], n-> Binomial(n+3, 4)*(2*n^8 +24*n^7 +98*n^6 +126*n^5 -97*n^4 -203*n^3 +127*n^2 +84*n -50)/110); # G. C. Greubel, Aug 28 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Luciano Ancora, Feb 05 2015
EXTENSIONS
Edited by Alonso del Arte and Bruno Berselli, Feb 10 2015
STATUS
approved