The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A254643 Third partial sums of ninth powers (A001017). 3
 1, 515, 21225, 324275, 2862790, 17714466, 85232910, 339635850, 1168343775, 3571356685, 9906622271, 25333920885, 60457751900, 135939162100, 290221510860, 592024274916, 1159935330765, 2192313968775, 4011847886725, 7130537084615 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Luciano Ancora, Table of n, a(n) for n = 1..1000 Luciano Ancora, Partial sums of m-th powers with Faulhaber polynomials Luciano Ancora, Pascal’s triangle and recurrence relations  for partial sums of m-th powers Index entries for linear recurrences with constant coefficients, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1). FORMULA G.f.: x*(1 +502*x +14608*x^2 +88234*x^3 +156190*x^4 +88234*x^5 +14608*x^6 +502*x^7 +x^8)/(1-x)^13. a(n) = n*(1+n)*(2+n)*(3+n)*(-50 +84*n +127*n^2 -204*n^3 -97*n^4 +126*n^5 +98*n^6 +24*n^7 +2*n^8)/2640. a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + n^9. EXAMPLE First differences: 1, 511, 19171, 242461, 1690981, ... (A022525) ------------------------------------------------------------------------ The ninth powers: 1, 512, 19683, 262144, 1953125, ... (A001017) ------------------------------------------------------------------------ First partial sums: 1, 513, 20196, 282340, 2235465, ... (A007487) Second partial sums: 1, 514, 20710, 303050, 2538515, ... (A253637) Third partial sums: 1, 515, 21225, 324275, 2862790, ... (this sequence) MAPLE seq(binomial(n+3, 4)*(2*n^8 +24*n^7 +98*n^6 +126*n^5 -97*n^4 -203*n^3 +127*n^2 +84*n -50)/110, n=1..30); # G. C. Greubel, Aug 28 2019 MATHEMATICA Table[n(1+n)(2+n)(3+n)(-50 +84n +127n^2 -204n^3 -97n^4 +126n^5 +98n^6 +24n^7 +2n^8)/2640, {n, 20}] (* or *) CoefficientList[Series[(1 +502x +14608x^2 +88234x^3 +156190x^4 +88234x^5 +14608x^6 +502x^7 +x^8)/(1-x)^13, {x, 0, 19}], x] (* Ancora *) Accumulate[Accumulate[Accumulate[Range[10]^9]]] (* Alonso del Arte, Feb 09 2015 *) PROG (PARI) vector(30, n, m=n+3; binomial(m, 4)*(2*(n*m)^4 -10*(n*m)^3 +11*(n*m)^2 +28*(n*m) -50)/110) \\ G. C. Greubel, Aug 28 2019 (Magma) [Binomial(n+3, 4)*(2*n^8 +24*n^7 +98*n^6 +126*n^5 -97*n^4 -203*n^3 +127*n^2 +84*n -50)/110: n in [1..30]]; // G. C. Greubel, Aug 28 2019 (Sage) [binomial(n+3, 4)*(2*n^8 +24*n^7 +98*n^6 +126*n^5 -97*n^4 -203*n^3 +127*n^2 +84*n -50)/110 for n in (1..30)] # G. C. Greubel, Aug 28 2019 (GAP) List([1..30], n-> Binomial(n+3, 4)*(2*n^8 +24*n^7 +98*n^6 +126*n^5 -97*n^4 -203*n^3 +127*n^2 +84*n -50)/110); # G. C. Greubel, Aug 28 2019 CROSSREFS Cf. A001017, A007487, A022525, A253637. Sequence in context: A168126 A246244 A257087 * A322883 A332151 A234826 Adjacent sequences: A254640 A254641 A254642 * A254644 A254645 A254646 KEYWORD nonn,easy AUTHOR Luciano Ancora, Feb 05 2015 EXTENSIONS Edited by Alonso del Arte and Bruno Berselli, Feb 10 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 3 08:07 EDT 2024. Contains 374885 sequences. (Running on oeis4.)