login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A332151
a(n) = 5*(10^(2*n+1)-1)/9 - 4*10^n.
2
1, 515, 55155, 5551555, 555515555, 55555155555, 5555551555555, 555555515555555, 55555555155555555, 5555555551555555555, 555555555515555555555, 55555555555155555555555, 5555555555551555555555555, 555555555555515555555555555, 55555555555555155555555555555, 5555555555555551555555555555555
OFFSET
0,2
FORMULA
a(n) = 5*A138148(n) + 10^n = A002279(2n+1) - 4*10^n.
G.f.: (1 + 404*x - 900*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.
MAPLE
A332151 := n -> 5*(10^(2*n+1)-1)/9-4*10^n;
MATHEMATICA
Array[5 (10^(2 # + 1)-1)/9 - 4*10^# &, 15, 0]
Table[With[{c=PadRight[{}, n, 5]}, FromDigits[Join[c, {1}, c]]], {n, 0, 20}] (* Harvey P. Dale, Mar 16 2021 *)
PROG
(PARI) apply( {A332151(n)=10^(n*2+1)\9*5-4*10^n}, [0..15])
(Python) def A332151(n): return 10**(n*2+1)//9*5-4*10**n
CROSSREFS
Cf. A002275 (repunits R_n = (10^n-1)/9), A002279 (5*R_n), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits), A002113 (palindromes).
Cf. A332121 .. A332191 (variants with different repeated digit 2, ..., 9).
Cf. A332150 .. A332159 (variants with different middle digit 0, ..., 9).
Sequence in context: A257087 A254643 A322883 * A234826 A232574 A282753
KEYWORD
nonn,base,easy
AUTHOR
M. F. Hasler, Feb 09 2020
STATUS
approved