|
|
A332151
|
|
a(n) = 5*(10^(2*n+1)-1)/9 - 4*10^n.
|
|
2
|
|
|
1, 515, 55155, 5551555, 555515555, 55555155555, 5555551555555, 555555515555555, 55555555155555555, 5555555551555555555, 555555555515555555555, 55555555555155555555555, 5555555555551555555555555, 555555555555515555555555555, 55555555555555155555555555555, 5555555555555551555555555555555
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
|
|
FORMULA
|
G.f.: (1 + 404*x - 900*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.
|
|
MAPLE
|
A332151 := n -> 5*(10^(2*n+1)-1)/9-4*10^n;
|
|
MATHEMATICA
|
Array[5 (10^(2 # + 1)-1)/9 - 4*10^# &, 15, 0]
Table[With[{c=PadRight[{}, n, 5]}, FromDigits[Join[c, {1}, c]]], {n, 0, 20}] (* Harvey P. Dale, Mar 16 2021 *)
|
|
PROG
|
(PARI) apply( {A332151(n)=10^(n*2+1)\9*5-4*10^n}, [0..15])
(Python) def A332151(n): return 10**(n*2+1)//9*5-4*10**n
|
|
CROSSREFS
|
Cf. A138148 (cyclops numbers with binary digits), A002113 (palindromes).
Cf. A332121 .. A332191 (variants with different repeated digit 2, ..., 9).
Cf. A332150 .. A332159 (variants with different middle digit 0, ..., 9).
|
|
KEYWORD
|
nonn,base,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|