|
|
A332191
|
|
a(n) = 10^(2n+1) - 1 - 8*10^n.
|
|
9
|
|
|
1, 919, 99199, 9991999, 999919999, 99999199999, 9999991999999, 999999919999999, 99999999199999999, 9999999991999999999, 999999999919999999999, 99999999999199999999999, 9999999999991999999999999, 999999999999919999999999999, 99999999999999199999999999999, 9999999999999991999999999999999
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
See A183184 = {1, 5, 13, 43, 169, 181, ...} for the indices of primes.
|
|
LINKS
|
|
|
FORMULA
|
G.f.: (1 + 808*x - 1700*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.
|
|
MAPLE
|
A332191 := n -> 10^(n*2+1)-1-8*10^n;
|
|
MATHEMATICA
|
Array[ 10^(2 # + 1)-1-8*10^# &, 15, 0]
|
|
PROG
|
(PARI) apply( {A332191(n)=10^(n*2+1)-1-8*10^n}, [0..15])
(Python) def A332191(n): return 10**(n*2+1)-1-8*10^n
|
|
CROSSREFS
|
Cf. A138148 (cyclops numbers with binary digits only), A002113 (palindromes).
Cf. A332121 .. A332181 (variants with different repeated digit 2, ..., 8).
|
|
KEYWORD
|
nonn,base,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|