|
|
A289794
|
|
Number of 6-cycles in the n-tetrahedral graph.
|
|
4
|
|
|
0, 0, 0, 0, 920, 17760, 122640, 537040, 1794240, 4994640, 12178320, 26840880, 54620280, 104184080, 188348160, 325459680, 541078720, 869994720, 1358615520, 2067768480, 3075954840, 4483100160, 6414845360, 9027424560, 12513177600, 17106746800, 23092009200
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,5
|
|
COMMENTS
|
Extended to a(1)-a(5) using the formula.
|
|
LINKS
|
|
|
FORMULA
|
a(n) = 5*binomial(n, 5)*(454 - 409*n + 66*n^2 + n^3).
a(n) = 9*a(n-1)-36*a(n-2)+84*a(n-3)-126*a(n-4)+126*a(n-5)-84*a(n-6)+36*a(n-7)-9*a(n-8)+a(n-9).
G.f.: (40*x^5*(-23 - 237*x + 102*x^2 + 116*x^3))/(-1 + x)^9.
|
|
MATHEMATICA
|
Table[5 Binomial[n, 5] (454 - 409 n + 66 n^2 + n^3), {n, 20}]
LinearRecurrence[{9, -36, 84, -126, 126, -84, 36, -9, 1}, {0, 0, 0, 0, 920, 17760, 122640, 537040, 1794240}, 20]
CoefficientList[Series[(40 x^4 (-23 - 237 x + 102 x^2 + 116 x^3))/(-1 + x)^9, {x, 0, 20}], x]
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|