login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A289792
Number of 4-cycles in the n-tetrahedral graph.
4
0, 0, 0, 0, 90, 540, 1995, 5775, 14280, 31500, 63630, 119790, 212850, 360360, 585585, 918645, 1397760, 2070600, 2995740, 4244220, 5901210, 8067780, 10862775, 14424795, 18914280, 24515700, 31439850, 39926250, 50245650, 62702640, 77638365, 95433345, 116510400
OFFSET
1,5
COMMENTS
Extended to a(1)-a(5) using the formula.
LINKS
Eric Weisstein's World of Mathematics, Graph Cycle
Eric Weisstein's World of Mathematics, Tetrahedral Graph
FORMULA
a(n) = binomial(n - 1, 4) * (210 - 41*n + 7*n^2)/2.
a(n) = 7*a(n-1)-21*a(n-2)+35*a(n-3)-35*a(n-4)+21*a(n-5)-7*a(n-6)+a(n-7).
G.f.: (-15*x^5*(6 - 6*x + 7*x^2))/(-1 + x)^7.
MATHEMATICA
Table[Binomial[n - 1, 4] (210 - 41 n + 7 n^2)/2, {n, 20}]
LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {0, 0, 0, 0, 90, 540, 1995}, 20]
CoefficientList[Series[-((15 x^4 (6 - 6 x + 7 x^2))/(-1 + x)^7), {x, 0, 20}], x]
CROSSREFS
Cf. A027789 (3-cycles), A289793 (5-cycles), A289794 (6-cycles).
Sequence in context: A203734 A066116 A233638 * A156738 A211446 A203787
KEYWORD
nonn,easy
AUTHOR
Eric W. Weisstein, Jul 12 2017
STATUS
approved