login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of 4-cycles in the n-tetrahedral graph.
4

%I #7 Jul 14 2017 13:33:17

%S 0,0,0,0,90,540,1995,5775,14280,31500,63630,119790,212850,360360,

%T 585585,918645,1397760,2070600,2995740,4244220,5901210,8067780,

%U 10862775,14424795,18914280,24515700,31439850,39926250,50245650,62702640,77638365,95433345,116510400

%N Number of 4-cycles in the n-tetrahedral graph.

%C Extended to a(1)-a(5) using the formula.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/GraphCycle.html">Graph Cycle</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/TetrahedralGraph.html">Tetrahedral Graph</a>

%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (7, -21, 35, -35, 21, -7, 1).

%F a(n) = binomial(n - 1, 4) * (210 - 41*n + 7*n^2)/2.

%F a(n) = 7*a(n-1)-21*a(n-2)+35*a(n-3)-35*a(n-4)+21*a(n-5)-7*a(n-6)+a(n-7).

%F G.f.: (-15*x^5*(6 - 6*x + 7*x^2))/(-1 + x)^7.

%t Table[Binomial[n - 1, 4] (210 - 41 n + 7 n^2)/2, {n, 20}]

%t LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {0, 0, 0, 0, 90, 540, 1995}, 20]

%t CoefficientList[Series[-((15 x^4 (6 - 6 x + 7 x^2))/(-1 + x)^7), {x, 0, 20}], x]

%Y Cf. A027789 (3-cycles), A289793 (5-cycles), A289794 (6-cycles).

%K nonn,easy

%O 1,5

%A _Eric W. Weisstein_, Jul 12 2017